Advertisement

Skeletal Radiology

, Volume 40, Issue 6, pp 683–700 | Cite as

Lumbar spondylolysis: a review

  • Antonio LeoneEmail author
  • Alessandro Cianfoni
  • Alfonso Cerase
  • Nicola Magarelli
  • Lorenzo Bonomo
Review Article

Abstract

Spondylolysis is an osseous defect of the pars interarticularis, thought to be a developmental or acquired stress fracture secondary to chronic low-grade trauma. It is encountered most frequently in adolescents, most commonly involving the lower lumbar spine, with particularly high prevalence among athletes involved in certain sports or activities. Spondylolysis can be asymptomatic or can be a cause of spine instability, back pain, and radiculopathy. The biomechanics and pathophysiology of spondylolysis are complex and debated. Imaging is utilized to detect spondylolysis, distinguish acute and active lesions from chronic inactive non-union, help establish prognosis, guide treatment, and to assess bony healing. Radiography with satisfactory technical quality can often demonstrate a pars defect. Multislice CT with multiplanar reformats is the most accurate modality for detecting the bony defect and may also be used for assessment of osseous healing; however, as with radiographs, it is not sensitive for detection of the early edematous stress response without a fracture line and exposes the patient to ionizing radiation. Magnetic resonance (MR) imaging should be used as the primary investigation for adolescents with back pain and suspected stress reactions of the lumbar pars interarticularis. Several imaging pitfalls render MR imaging less sensitive than CT for directly visualizing the pars defects (regional degenerative changes and sclerosis). Nevertheless, the presence of bone marrow edema on fluid-sensitive images is an important early finding that may suggest stress response without a visible fracture line. Moreover, MR is the imaging modality of choice for identifying associated nerve root compression. Single-photon emission computed tomography (SPECT) use is limited by a high rate of false-positive and false-negative results and by considerable ionizing radiation exposure. In this article, we provide a review of the current concepts regarding spondylolysis, its epidemiology, pathogenesis, and general treatment guidelines, as well as a detailed review and discussion of the imaging principles for the diagnosis and follow-up of this condition.

Keywords

Spine CT MRI Single photon emission computed tomography Spondylolysis Biomechanics 

Notes

Acknowledgements

The authors wish to thank Walter Huda, Ph.D. from the Department of Radiology and Radiological Sciences, Medical University of South Carolina, Charleston, SC, for the “Radiation dose” paragraph text and Table 2 editing. In addition, the authors thank Steven Imbesi Associate Professor of Clinical Radiology from University of California, San Diego Medical Center, San Diego, California, for assistance in editing the manuscript.

References

  1. 1.
    Rauch RA, Jinkins JR. Lumbosacral spondylolisthesis associated with spondylolysis. Neuroimaging Clin N Am. 1993;3:543–55.Google Scholar
  2. 2.
    Wiltse LL, Rothman SLG. Spondylolisthesis: classification, diagnosis and natural history. Semin Spine Surg. 1989;1:78–94.Google Scholar
  3. 3.
    Brooks BK, Southam S, Mlady GW, Logan J, Rosett M. Lumbar spine spondylolysis in the adult population: using computed tomography to evaluate the possibility of adult onset lumbar spondylosis as a cause of back pain. Skeletal Radiol 2009; doi: 10.1007/s00256-009-0825-4
  4. 4.
    Rossi F. Spondylolysis, spondylolisthesis and sports. J Sports Med Phys Fit. 1988;18:317–40.Google Scholar
  5. 5.
    Wiltse LL. Etiology of spondylolisthesis. Clin Orthop. 1957;10:48–60.PubMedGoogle Scholar
  6. 6.
    Fredrickson BE, Baker D, McHolick WJ, Yuan HA, Lubicky JP. The natural history of spondylolysis, and spondylolisthesis in children and adolescents. J Bone Joint Surg Am. 1984;66:699–707.PubMedGoogle Scholar
  7. 7.
    Sonne-Holm S, Jacobsen S, Rovsing HC, Monrad H, Gebuhr P. Lumbar spondylolysis: a life long dynamic condition? A cross sectional survey of 4.151 adults. Eur Spine J. 2007;16:821–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Rowe GG, Roche MB. The etiology of separate neural arch. J Bone Joint Surg Am. 1953;35:102–9.PubMedGoogle Scholar
  9. 9.
    Grogan JP, Hemminghytt S, Williams AL, Carrera GF, Haughton VM. Spondylolysis studied with computed tomography. Radiology. 1982;145:737–42.PubMedGoogle Scholar
  10. 10.
    Teplick JG, Lafley PA, Berman A, Haskin ME. Diagnosis and evaluation of spondylolisthesis and/or spondylolysis on axial CT. AJNR Am J Neuroradiol. 1986;7:479–91.PubMedGoogle Scholar
  11. 11.
    Rothman SLG, Glenn WV. CT multiplanar reconstruction in 253 cases of lumbar spondylolysis. AJNR Am J Neuroradiol. 1984;5:81–90.PubMedGoogle Scholar
  12. 12.
    Wiltse LL, Widell EH, Jackson DW. Fatigue fracture: the basic lesion in isthmic spondylolisthesis. J Bone Joint Surg Am. 1975;57:17–22.PubMedGoogle Scholar
  13. 13.
    Albanese M, Pizzutillo PD. Family study of spondylolysis and spondylolisthesis. J Pediatr Orthop. 1982;2:496–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Turner RH, Bianco Jr A. Spondylolysis and spondylolisthesis in children and teen-agers. J Bone Joint Surg Am. 1971;53:1298–306.PubMedGoogle Scholar
  15. 15.
    Wynne-Davies R, Scott JHS. Inheritance and spondylolisthesis–a radiographic family survey. J Bone Joint Surg. 1979;61:301–5.Google Scholar
  16. 16.
    Troup JDG. Mechanical factors in spondylolisthesis and spondylolysis. Clin Orthop. 1976;147:59–67.Google Scholar
  17. 17.
    Goldstein JD, Berger PE, Windler GE, Jackson DW. Spine injuries in gymnasts and swimmers. An epidemiologic investigation. Am J Sports Med. 1980;19:463–7.CrossRefGoogle Scholar
  18. 18.
    Saraste H. Long-term clinical and radiological follow-up of spondylolysis and spondylolisthesis. J Pediatr Orthop. 1987;7:631–8.PubMedGoogle Scholar
  19. 19.
    Wiltse LL. Spondylolisthesis: classification and etiology. In American Academy of Orthopaedic Surgeons: Symposium of the Spine. St. Louis: Mosby; 1969. p. 143–68.Google Scholar
  20. 20.
    Ward CV, Latimer B, Alander DH, et al. Radiographic assessment of lumbar facet distance spacing and spondylolysis. Spine. 2007;32:E85–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Zehnder SW, Ward CV, Crow AJ, Alander D, Latimer B. Radiographic assessment of lumbar facet distance spacing and pediatric spondylolysis. Spine. 2009;34:285–90.PubMedCrossRefGoogle Scholar
  22. 22.
    Pope MH. Biomechanics of the lumbar spine. Ann Med. 1989;21:347–51.PubMedCrossRefGoogle Scholar
  23. 23.
    Guillot M, Fournier J, Vanneuville G, et al. Mechanics of the characteristic geometry of the human spine undergoing vertical pressure. Rev Rhum Mal Osteoartic. 1988;55:351–9.PubMedGoogle Scholar
  24. 24.
    Wempner G, Talaslidis D. Von Mises yield criterion. In: Wempner G, Talaslidis D, editors. Mechanics of solids and shells. Theories and approximations. Boca Raton, FL. CRC Press; 2003. p. 168–9.Google Scholar
  25. 25.
    Tozeren A. Bodies in planar motion. In: Tozeren A, editor. Human body dynamics. Classical mechanics and human movements. New York: Springer; 2000. p. 84–116.Google Scholar
  26. 26.
    Mac-Thiong JM, Labelle H, Berthonnaud E, Betz RR, Roussouly P. Sagittal spinopelvic balance in normal children and adolescents. Eur Spine J. 2007;16(2):227–34.PubMedCrossRefGoogle Scholar
  27. 27.
    Vialle R, Ilharreborde B, Danzac C, Lenoir T, Rillardon L, Guigui P. Is there a sagittal imbalance of the spine in isthmic spondylolisthesis? A correlation study. Eur Spine J. 2007;16:1641–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Blondel B, Jouve JL, Panuel M, et al. Pelvic incidence reliability in spine sagittal balance. Rev Chir Orthop Reparatrice Appar Mot. 2008;94:321–6.PubMedGoogle Scholar
  29. 29.
    Floman Y. Progression of lumbosacral isthmic spondylolisthesis in adults. Spine. 2000;25:342–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Mihara H, Onari K, Cheng BC, David SM, Zdeblick TA. The biomechanical effect of spondylolysis and its treatment. Spine. 2003;28:235–8.PubMedGoogle Scholar
  31. 31.
    Farfan HF, Osteria V, Lamy C. The mechanical etiology of spondylolysis and spondylolisthesis. Clin Orthop. 1976;117:40–55.PubMedGoogle Scholar
  32. 32.
    Sairyo K, Katoh S, Ikata T, Fujii K, Kajiura K, Goel VK. The pathomechanism of isthmic lumbar spondylolisthesis. Spine J. 2001;1(3):171–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Kajiura K, Katoh S, Sairyo K, Ikata T, Goel VK, Murakami RI. Slippage mechanism of pediatric spondylolysis: biomechanical study using immature calf spines. Spine. 2001;26(20):2208–012.PubMedCrossRefGoogle Scholar
  34. 34.
    Sairyo K, Goel VK, Grobler LJ, Ikata T, Katoh S. The pathomechanism of isthmic lumbar spondylolisthesis. A biomechanical study in immature calf spines. Spine. 1998;23:1442–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Konz RJ, Goel VK, Grobler LJ, et al. The pathomechanism of spondylolytic spondylolisthesis in immature primate lumbar spines in vitro and finite element assessments. Spine. 2001;26(4):E38–49.PubMedCrossRefGoogle Scholar
  36. 36.
    Ikata T, Miyake R, Katoh S, Morita T, Murase M. Pathogenesis of sports-related spondylolisthesis in adolescents. Radiographic and magnetic resonance imaging study. Am J Sports Med. 1996;24(1):94–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Sairyo K, Goel VK, et al. Three dimensional finite element analysis of the pediatric lumbar spine. II. Biomechanical change as the initiating factor for pediatric isthmic spondylolisthesis at the growth plate. Eur Spine J. 2006;15(6):930–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Sakamaki T, Katoh S, Sairyo K. Normal and spondylolytic pediatric spine movements with reference to instantaneous axis of rotation. Spine. 2002;27(2):141–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Labelle H, Roussouly P, Berthonnaud E, Transfeldt E, O’Brien M, Chopin D, et al. Spondylolisthesis, pelvic incidence, and spinopelvic balance: a correlation study. Spine. 2004;29:2049–54.PubMedCrossRefGoogle Scholar
  40. 40.
    Marty C, Boisaubert b, Descamps H, Montigny JP, Hecquet J, Legaye J, et al. The sagittal anatomy of the sacrum among young adults, infants, and spondylolisthesis patients. Eur Spine J. 2002;11:119–25.PubMedCrossRefGoogle Scholar
  41. 41.
    Hanson DS, Bridwell KH, Rhee JM, Lenke LG. Correlation of pelvic incidence with low- and high-grade isthmic spondylolisthesis. Spine. 2002;27:2026–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Legaye J, Duval-Beaupere G, Hecquet J, Marty C. Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J. 1998;7:99–103.PubMedCrossRefGoogle Scholar
  43. 43.
    Postacchini F. The evolution of spondylolysis into spondylolisthesis during adult age. Ital J Orthop Traumatol. 1989;15:209–16.Google Scholar
  44. 44.
    Osterman K, Schlenzka D, Poussa M, et al. Isthmic spondylolisthesis in symptomatic and asymptomatic subjects, epidemiology, and natural history with special reference to disk abnormality and mode of treatment. Clin Orthop Relat Res. 1993;(297):65–70.Google Scholar
  45. 45.
    McGregor AH, Anderton L, Gedroyc WM, Johnson J, Hughes SP. The use of interventional open MRI to assess the kinematics of the lumbar spine in patients with spondylolisthesis. Spine. 2002;27:1582–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Axelsson P, Johnsson R, Strömqvist B. Is there increased intervertebral mobility in isthmic adult spondylolisthesis? A matched comparative study using roentgen stereophotogrammetry. Spine. 2000;25(13):1701–3.PubMedCrossRefGoogle Scholar
  47. 47.
    Szypryt EP, Twining P, Mulholland RC, Worthington BS. The prevalence of disc degeneration associated with neural arch defects of the lumbar spine assessed by magnetic resonance imaging. Spine. 1989;14(9):977–81.PubMedCrossRefGoogle Scholar
  48. 48.
    Turner PG, Hancock PG, Gren JH, et al. Back pain in childhood. Spine (Phila Pa 1976) 1989;14:812–814.Google Scholar
  49. 49.
    King HA. Back pain in children. Pediatr Clin N Am. 1984;31:1083–95.Google Scholar
  50. 50.
    Anderson SJ. Assessment and management of the pediatric and adolescent patient with low back pain. Phys Med Rehabil Clin N Am. 1991;2:157–85.CrossRefGoogle Scholar
  51. 51.
    Smith JA, Hu SS. Management of spondylolysis and spondylolisthesis in the pediatric and adolescent population. Orthop Clin N Am. 1999;30:487–99.CrossRefGoogle Scholar
  52. 52.
    Micheli LJ. Low back pain in the adolescent: differential diagnosis. Am J Sports Med. 1979;7:362–4.PubMedCrossRefGoogle Scholar
  53. 53.
    Pizzutillo PD, Hummer CD. Nonoperative treatment for painful adolescent spondylolysis or spondylolisthesis. J Pediatr Orthop. 1989;9:538–40.PubMedCrossRefGoogle Scholar
  54. 54.
    Wiltse LL, Jackson DW. Treatment of spondylolisthesis and spondylolysis in children. Clin Orthop. 1976;117:92–100.PubMedGoogle Scholar
  55. 55.
    Dreyzin V, Esses SI. A comparative analysis of spondylolysis repair. Spine. 1994;19:1909–14.PubMedCrossRefGoogle Scholar
  56. 56.
    Amato M, Totty WG, Gilula LA. Spondylolysis of the lumbar spine: demonstration of defects and laminal fragmentation. Radiology. 1984;153:627–9.PubMedGoogle Scholar
  57. 57.
    Ravichandran G. A radiologic sign in spondylolisthesis. AJR Am J Roentgenol. 1980;134:113–7.PubMedGoogle Scholar
  58. 58.
    Maldague BE. Unilateral arch hypertrophy with spinous process tilt: a sign of arch deficiency. Diagn Radiol. 1976;121:567–74.Google Scholar
  59. 59.
    Hardley LA. Bony masses projecting into the spinal canal opposite a break in the neural arch of the fifth lumbar vertebra. J Bone Joint Surg. 1955;37:787–97.Google Scholar
  60. 60.
    Araki T, Harata S, Nakano K, Satoh T. Reactive sclerosis of the pedicle associated with contralateral spondylolysis. Spine. 1992;17:1424–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Saifuddin A, White J, Tucker S, Taylor BA. Orientation of lumbar pars defects; implications for radiographic demonstration and surgical management. J Bone Joint Surg Br. 1998;80:208–11.PubMedCrossRefGoogle Scholar
  62. 62.
    Meyerding HW. Low backache and sciatic pain associated with spondylolisthesis and protruded intervertebral disk. J Bone and Joint Surg. 1941;23:461–6.Google Scholar
  63. 63.
    Wiltse LL, Winter RB. Terminology and measurement of spondylolisthesis. J Bone Joint Surg. 1983;65:768–72.PubMedGoogle Scholar
  64. 64.
    Leone A, Guglielmi G, Cassar-Pullicino VN, Bonomo L. Lumbar intervertebral instability: a review. Radiology. 2007;245:62–77. Review.PubMedCrossRefGoogle Scholar
  65. 65.
    McGregor AH, McCarthy ID, Hughes SP. Motion characteristics of the lumbar spine in the normal population. Spine. 1995;20:2421–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Dvorak J, Panjabi MM, Chang D, Theiler R, Grob D. Functional radiographic diagnosis of the lumbar spine: flexion-extension and lateral bending. Spine. 1991;16:562–71.PubMedCrossRefGoogle Scholar
  67. 67.
    Hayes MA, Howard TC, Grue CR, Kopta JA. Roentgenographic evaluation of lumbar spine flexion-extension in asymptomatic individuals. Spine. 1989;14:327–31.PubMedCrossRefGoogle Scholar
  68. 68.
    Boden SD, Wiesel SW. Lumbosacral segmental motion in normal individuals: have we been measuring instability properly? Spine. 1990;15:571–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Hanley EN Jr. The indications for lumbar spinal fusion with and without instrumentation. Spine. 1995;20(24 Suppl):143–53S.PubMedGoogle Scholar
  70. 70.
    Hession PR, Butt WP. Imaging of spondylolysis and spondylolisthesis. Eur Radiol. 1996;6:284–90.PubMedCrossRefGoogle Scholar
  71. 71.
    Dunn AJ, Campbell RS, Mayor PE, Rees D. Radiological findings and healing patterns of incomplete stress fractures of the pars interarticularis. Skeletal Radiol. 2008;37(5):443–50.PubMedCrossRefGoogle Scholar
  72. 72.
    Campbell RS, Grainger AJ, Hide IG, Papastefanou S, Greenough CG. Juvenile spondylolysis: a comparative analysis of CT, SPECT and MRI. Skeletal Radiol. 2005;34(2):63–73.PubMedCrossRefGoogle Scholar
  73. 73.
    Johnson DW, Farnum GN, Latchaw RE, Erba SM. MR Imaging of the pars interarticularis. AJR Am J Roentgenol. 1989;152:327–32.Google Scholar
  74. 74.
    Saifuddin A, Burnett SJD. The value of lumbar spine MRI in the assessment of the pars interarticularis. Clin Radiol. 1997;52:666–71.PubMedCrossRefGoogle Scholar
  75. 75.
    Campbell RS, Grainger AJ. Optimization of MRI pulse sequences to visualize the normal pars interarticularis. Clin Radiol. 1999;54:63–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Hollenberg GM, Beattie PF, Meyers SP, Weinberg EP, Adams MJ. Stress reactions of the lumbar pars interarticularis: the development of a new MRI classification system. Spine. 2002;27(2):181–6.PubMedCrossRefGoogle Scholar
  77. 77.
    Jinkins JR, Matthes JC, Sener RN, Venkatappan S, Rauch R. Spondylolysis, spondylolisthesis, and associated nerve root entrapment in the lumbosacral spine: MR evaluation. AJR Am J Roentgenol. 1992;159:799–803.PubMedGoogle Scholar
  78. 78.
    Ulmer JL, Elster AD, Mathews VP, King JC. Distinction between degenerative and isthmic spondylolisthesis on sagittal MR images: importance of increased anteroposterior diameter of the spinal canal (“wide canal sign”). AJR Am J Roentgenol. 1994;163:411–6.PubMedGoogle Scholar
  79. 79.
    Ulmer JL, Elster AD, Mathews VP, Allen AM. Lumbar spondylolysis: reactive marrow changes seen in adjacent pedicles on MR images. AJR Am J Roentgenol. 1995;164:429–33.PubMedGoogle Scholar
  80. 80.
    Ulmer JL, Mathews VP, Elster AD, Mark LP, Daniels DL, Mueller W. MR imaging of lumbar spondylolysis: the importance of ancillary observations. AJR Am J Roentgenol. 1997;169:233–9.PubMedGoogle Scholar
  81. 81.
    Saraste H, Broston LA, Aparisi T. Prognostic radiographic aspects of spondylolisthesis. Acta Radiol Diagn. 1984;25:427–32.Google Scholar
  82. 82.
    De Roos A, Kressel H, Spritzer C, Dalinka M. MR imaging of marrow changes adjacent to end-plates in degenerative disk disease. AJR Am J Roentgenol. 1987;149:531–4.PubMedGoogle Scholar
  83. 83.
    Modic MT, Steinberg PM, Ross JS, Masarik TJ, Carter JR. Imaging of degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology. 1988;166:193–9.PubMedGoogle Scholar
  84. 84.
    Grenier N, Kressel HY, Schiebler ML, Grossman RI. Isthmic spondylolysis of the lumbar spine: MR imaging at 1.5 T. Radiology. 1989;170:489–93.PubMedGoogle Scholar
  85. 85.
    Major NM, Helms CA, Richardson WJ. MR imaging of fibrocartilaginous masses arising on the margins of spondylolysis defects. AJR Am J Roentgenol. 1999;173:673–6.PubMedGoogle Scholar
  86. 86.
    Payne WK III, Ogilvie JW. Back pain in children and adolescents. Pediatr Clin N Am. 1996;43:899–917.CrossRefGoogle Scholar
  87. 87.
    Elliot S, Hutson MA, Wastie ML. Bone scintigraphy in the assessment of spondylolysis in patients attending a sports injury clinic. Clin Radiol. 1988;39:269–72.Google Scholar
  88. 88.
    Papanicolaou N, Wilkinson RH, Emans JB, Treves S, Micheli LJ. Bone scintigraphy and radiography in young athletes with low back pain. AJR Am J Roentgenol. 1985;145:1039–44.PubMedGoogle Scholar
  89. 89.
    Ryan RJ, Gibson T, Fogleman I. The identification of spinal pathology in chronic low back pain using single photon computed tomography. Nucl Med Commun. 1992;13:497–502.PubMedCrossRefGoogle Scholar
  90. 90.
    Collier BD, Johnson RP, Carrera GF, et al. Painful spondylolysis or spondylolisthesis studied by radiography and single photon emission computed tomography. Radiology. 1985;154:207–11.PubMedGoogle Scholar
  91. 91.
    Bellah RD, Summerville DA, Treves ST, Micheli LJ. Low back pain in adolescent athletes: detection of stress injury to the pars interarticularis with SPECT. Radiology. 1991;180:509–12.PubMedGoogle Scholar
  92. 92.
    Raby N, Mathews S. Symptomatic spondylolysis: correlation of CT and SPECT with clinical outcome. Clin Radiol. 1993;48:97–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Gregory PL, Batt ME, Kerslake RW, Webb JK. Single photon emission computerized tomography and reverse gantry computerized tomography findings in patients with back pain investigated for spondylolysis. Clin J Sport Med. 2005;15(2):79–86.PubMedCrossRefGoogle Scholar
  94. 94.
    Mettler FA, Huda W, Yoshizumi TT, Mahadevappa M. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology. 2008;248:254–63.PubMedCrossRefGoogle Scholar
  95. 95.
    Schauer DA, Linton OW. Ionizing radiation exposure of the population of the United States. National Council on Radiation Protection and Measurements—NCRP report N. 160. Health Phys. 2009;97(1):1–5.PubMedCrossRefGoogle Scholar
  96. 96.
    Valentin J. Low-dose extrapolation of radiation-related cancer risk. Ann ICRP. 2005;35(4):1–140.CrossRefGoogle Scholar
  97. 97.
    Steiner ME, Micheli LJ. Treatment of symptomatic spondylolysis and spondylolisthesis with the modified Boston brace. Spine. 1985;10:937–43.PubMedCrossRefGoogle Scholar
  98. 98.
    Blanda J, Bethem D, Moats W, Lew M. Defects of pars interarticularis in athletes: a protocol for nonoperative treatment. J Spinal Disord. 1993;6:406–11.PubMedCrossRefGoogle Scholar
  99. 99.
    Wu SS, Lee CH, Chen PQ. Operative repair of symptomatic spondylolysis following a positive response to diagnostic pars injection. J Spinal Disord. 1999;12:10–6.PubMedCrossRefGoogle Scholar
  100. 100.
    Cheung EV, Herman MJ, Cavalier R, Pizzutillo PD. Spondylolysis and spondylolisthesis in children and adolescents. II. Surgical management. J Am Acad Orthop Surg. 2006;14:488–98.PubMedGoogle Scholar
  101. 101.
    Buck JE. Direct repair of the defect in spondylolisthesis. Preliminary report. J Bone Joint Surg Br. 1970;52:432–7.PubMedGoogle Scholar
  102. 102.
    Bradford DS, Iza J. Repair of the defect in spondylolysis or minimal degrees of spondylolisthesis by segmental wire fixation and bone grafting. Spine. 1985;10:673–9.PubMedCrossRefGoogle Scholar
  103. 103.
    Kakiuchi M. Repair of the defect in spondylolysis. Durable fixation with pedicle screws and laminar hooks. J Bone Joint Surg Am. 1997;79:818–25.PubMedGoogle Scholar
  104. 104.
    Morscher E, Gerber B, Fasel J. Surgical treatment of spondylolisthesis by bone grafting and direct stabilization of spondylolysis by means of a hook screw. Arch Orthop Trauma Surg. 1984;103:175–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Songer MN, Rovin R. Repair of the pars interarticularis defect with a cable-screw construct. A preliminary report. Spine. 1998;23:263–9.PubMedCrossRefGoogle Scholar
  106. 106.
    Zagra A, Giudici F, Minoia L, Corriero AS, Zagra I. Long-term results of pediculo-body fixation and posterolateral fusion for lumbar spondylolisthesis. Eur Spine J. 2009;1:151–5.CrossRefGoogle Scholar
  107. 107.
    Johnson GV, Thompson AG. The Scott wiring technique for direct repair of lumbar spondylolysis. J Bone Joint Surg Br. 1992;74-B:426–30.Google Scholar
  108. 108.
    Reitman CA, Esses SI. Direct repair of spondylolytic defects in young competitive athletes. Spine J. 2002;2:142–4.PubMedCrossRefGoogle Scholar
  109. 109.
    Rubery PT. Athletic activity after spine surgery in children and adolescents: results of a survey. Spine. 2002;15:423–7.CrossRefGoogle Scholar

Copyright information

© ISS 2010

Authors and Affiliations

  • Antonio Leone
    • 1
    Email author
  • Alessandro Cianfoni
    • 2
  • Alfonso Cerase
    • 3
  • Nicola Magarelli
    • 1
  • Lorenzo Bonomo
    • 1
  1. 1.Department of Bioimaging and Radiological SciencesCatholic University, School of MedicineRomeItaly
  2. 2.Neuroradiology Section, Department of Radiology and Radiological SciencesMedical University of South Carolina (MUSC)CharlestonUSA
  3. 3.Unit Neuroimaging and Neurointervention (NINT), Department of Neurosciences, Azienda Ospedaliera Universitaria Senese“Santa Maria alle Scotte” General HospitalSienaItaly

Personalised recommendations