Advertisement

Skeletal Radiology

, Volume 38, Issue 5, pp 505–511 | Cite as

Magnetic resonance image segmentation using semi-automated software for quantification of knee articular cartilage—initial evaluation of a technique for paired scans

  • M. H. Brem
  • P. K. Lang
  • G. Neumann
  • P. M. Schlechtweg
  • E. Schneider
  • R. Jackson
  • J. Yu
  • C. B. Eaton
  • F. F. Hennig
  • H. Yoshioka
  • G. Pappas
  • J. DuryeaEmail author
Scientific Article

Abstract

Purpose

Software-based image analysis is important for studies of cartilage changes in knee osteoarthritis (OA). This study describes an evaluation of a semi-automated cartilage segmentation software tool capable of quantifying paired images for potential use in longitudinal studies of knee OA. We describe the methodology behind the analysis and demonstrate its use by determination of test–retest analysis precision of duplicate knee magnetic resonance imaging (MRI) data sets.

Methods

Test–retest knee MR images of 12 subjects with a range of knee health were evaluated from the Osteoarthritis Initiative (OAI) pilot MR study. Each subject was removed from the magnet between the two scans. The 3D DESS (sagittal, 0.456 mm × 0.365 mm, 0.7 mm slice thickness, TR 16.5 ms, TE 4.7 ms) images were obtained on a 3-T Siemens Trio MR system with a USA Instruments quadrature transmit–receive extremity coil. Segmentation of one 3D-image series was first performed and then the corresponding retest series was segmented by viewing both image series concurrently in two adjacent windows. After manual registration of the series, the first segmentation cartilage outline served as an initial estimate for the second segmentation. We evaluated morphometric measures of the bone and cartilage surface area (tAB and AC), cartilage volume (VC), and mean thickness (ThC.me) for medial/lateral tibia (MT/LT), total femur (F) and patella (P). Test–retest reproducibility was assessed using the root-mean square coefficient of variation (RMS CV%).

Results

For the paired analyses, RMS CV % ranged from 0.9% to 1.2% for VC, from 0.3% to 0.7% for AC, from 0.6% to 2.7% for tAB and 0.8% to 1.5% for ThC.me.

Conclusion

Paired image analysis improved the measurement precision of cartilage segmentation. Our results are in agreement with other publications supporting the use of paired analysis for longitudinal studies of knee OA.

Keywords

Osteoarthritis Knee Cartilage MRI Segmentation 

Notes

Acknowledgments

The Osteoarthritis Initiative (OAI) and this pilot study are conducted and supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases in collaboration with the OAI Investigators and Consultants. This manuscript has been reviewed by the OAI Publications committee for scientific content and data interpretation. The research reported in this article was supported in part by contracts N01-AR-2-2261, N01-AR-2-2262 and N01-AR-2-2258 from NIAMS. Support for this project was also provided by a contract with the NIAMS intramural program.

This work was also supported by a contract with the NIH/NIAMS intramural program. We would like to thank Raphaela Goldbach-Mansky of the NIH/NIAMS Intramural Research Program for her support in developing early versions of the software.

NIAMS funded this work in part (contracts N01-AR-2-2261, N01-AR-2-2262 and N01-AR-2-2258).

Conflict of Interest Statement

ES, RJ, JY, and CBE received direct salary support or had fee for service contracts associated with the OAI. In particular:

ES is the principal of SciTrials, LLC, is the NIAMS OAI Technical Advisor and is under contract to NIAMS for this

purpose; RJ and JU are at The Ohio State University that is under contract (N01-AR-2-2261) as a clinical center for the

OAI; CBE is at the Memorial Hospital of Rhode Island that is under contract (N01-AR-2-2262) as a clinical center for the OAI.

References

  1. 1.
    Cisternas M, Yelin E, Trupin L, Murphy L, Helmick CG. Direct and indirect costs of arthritis and other rheumatic conditions - United States, 1997. Report. Atlanta: Centers for Disease Control and Prevention; 2003 November 21, 2003 Contract No.: Document Number.Google Scholar
  2. 2.
    Pientka L. Arthrose als Volkskrankheit. Klin Forsch 2000; 6(Suppl 2): 2–3.Google Scholar
  3. 3.
    Link TM, Steinbach LS, Ghosh S, Ries M, Lu Y, Lane N, et al. Osteoarthritis: MR imaging findings in different stages of disease and correlation with clinical findings. Radiology 2003; 226(2): 373–381.PubMedCrossRefGoogle Scholar
  4. 4.
    Kornaat PR, Bloem JL, Ceulemans RY, Riyazi N, Rosendaal FR, Nelissen RG, et al. Osteoarthritis of the knee: association between clinical features and MR imaging findings. Radiology 2006; 239(3): 811–817.PubMedCrossRefGoogle Scholar
  5. 5.
    Peterfy CG, van Dijke CF, Janzen DL, Gluer CC, Namba R, Majumdar S, et al. Quantification of articular cartilage in the knee with pulsed saturation transfer subtraction and fat-suppressed MR imaging: optimization and validation. Radiology 1994; 192(2): 485–491.PubMedGoogle Scholar
  6. 6.
    Biswal S, Hastie T, Andriacchi TP, Bergman GA, Dillingham MF, Lang P. Risk factors for progressive cartilage loss in the knee: a longitudinal magnetic resonance imaging study in forty-three patients. Arthritis Rheum 2002; 46(11): 2884–2892.PubMedCrossRefGoogle Scholar
  7. 7.
    Yoshioka H, Stevens K, Genovese M, Dillingham MF, Lang P. Articular cartilage of knee: normal patterns at MR imaging that mimic disease in healthy subjects and patients with osteoarthritis. Radiology 2004; 231(1): 31–38.PubMedCrossRefGoogle Scholar
  8. 8.
    Peterfy CG, Guermazi A, Zaim S, Tirman PF, Miaux Y, White D, et al. Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthr Cartil 2004; 12(3): 177–190.PubMedCrossRefGoogle Scholar
  9. 9.
    Hunter DJ, Lo GH, Gale D, Grainger AJ, Guermazi A, Conaghan PG. The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston Leeds Osteoarthritis Knee Score). Ann Rheum Dis 2008; 67(2): 206–211.PubMedCrossRefGoogle Scholar
  10. 10.
    Baker JA, Kornguth PJ, Lo JY, Williford ME, Floyd CE Jr. Breast cancer: prediction with artificial neural network based on BI-RADS standardized lexicon. Radiology 1995; 196(3): 817–822.PubMedGoogle Scholar
  11. 11.
    Stammberger T, Eckstein F, Michaelis M, Englmeier KH, Reiser M. Interobserver reproducibility of quantitative cartilage measurements: comparison of B-spline snakes and manual segmentation. Magn Reson Imaging 1999; 17(7): 1033–1042.PubMedCrossRefGoogle Scholar
  12. 12.
    Solloway S, Hutchinson CE, Waterton JC, Taylor CJ. The use of active shape models for making thickness measurements of articular cartilage from MR images. Magn Reson Med 1997; 37(6): 943–952.PubMedCrossRefGoogle Scholar
  13. 13.
    Kshirsagar AA, Watson PJ, Tyler JA, Hall LD. Measurement of localized cartilage volume and thickness of human knee joints by computer analysis of three-dimensional magnetic resonance images. Invest Radiol 1998; 33(5): 289–299.PubMedCrossRefGoogle Scholar
  14. 14.
    McWalter EJ, Wirth W, Siebert M, von Eisenhart-Rothe RM, Hudelmaier M, Wilson DR, et al. Use of novel interactive input devices for segmentation of articular cartilage from magnetic resonance images. Osteoarthr Cartil 2005; 13(1): 48–53.PubMedCrossRefGoogle Scholar
  15. 15.
    Duryea J, Neumann G, Brem MH, Koh W, Noorbakhsh F, Jackson RD, et al. Novel fast semi-automated software to segment cartilage for knee MR acquisitions. Osteoarthritis Cartilage 2007; 15(5): 487–492.PubMedCrossRefGoogle Scholar
  16. 16.
    Raynauld JP, Kauffmann C, Beaudoin G, Berthiaume MJ, de Guise JA, Bloch DA, et al. Reliability of a quantification imaging system using magnetic resonance images to measure cartilage thickness and volume in human normal and osteoarthritic knees. Osteoarthr Cartil 2003; 11(5): 351–360.PubMedCrossRefGoogle Scholar
  17. 17.
    Fripp J, Crozier S, Warfield SK, Ourselin S. Automatic segmentation of the bone and extraction of the bone-cartilage interface from magnetic resonance images of the knee. Phys Med Biol 2007; 52(6): 1617–1631.PubMedCrossRefGoogle Scholar
  18. 18.
    Eckstein F, Ateshian G, Burgkart R, Burstein D, Cicuttini F, Dardzinski B, et al. Proposal for a nomenclature for magnetic resonance imaging based measures of articular cartilage in osteoarthritis. Osteoarthr Cartil 2006; 14(10): 974–983.PubMedCrossRefGoogle Scholar
  19. 19.
    Wirth W, Hellio Le Graverand MP, Wyman BT, Maschek S, Hudelmaier M, Hitzl W, et al. Regional analysis of femorotibial cartilage loss in a subsample from the Osteoarthritis Initiative progression subcohort. Osteoarthr Cartil 2008 Sep 11 (in press).Google Scholar
  20. 20.
    Hunter DJ, Zhang YQ, Niu JB, Felson DT, Kwoh K, Newman A, et al. Patella malalignment, pain and patellofemoral progression: the Health ABC Study. Osteoarthritis Cartilage 2007; 15(10): 1120–1127.PubMedCrossRefGoogle Scholar
  21. 21.
    Neogi T, Nevitt M, Niu J, LaValley MP, Hunter DJ, Terkeltaub R, et al. Lack of association between chondrocalcinosis and increased risk of cartilage loss in knees with osteoarthritis: results of two prospective longitudinal magnetic resonance imaging studies. Arthritis Rheum 2006; 54(6): 1822–1828.PubMedCrossRefGoogle Scholar
  22. 22.
    Neogi T, Booth SL, Zhang YQ, Jacques PF, Terkeltaub R, Aliabadi P, et al. Low vitamin K status is associated with osteoarthritis in the hand and knee. Arthritis Rheum 2006; 54(4): 1255–1261.PubMedCrossRefGoogle Scholar
  23. 23.
  24. 24.
    Eckstein F, Kunz M, Hudelmaier M, Jackson R, Yu J, Eaton CB, et al. Impact of coil design on the contrast-to-noise ratio, precision, and consistency of quantitative cartilage morphometry at 3 Tesla: a pilot study for the osteoarthritis initiative. Magn Reson Med 2007; 57(2): 448–454.PubMedCrossRefGoogle Scholar
  25. 25.
    Eckstein F, Maschek S, Wirth W, Hudelmaier M, Hitzl W, Wyman B, et al. One year change of knee cartilage morphology in the first release of participants from the Osteoarthritis Initiative Progression Subcohort—association with sex, Body Mass Index, symptoms, and radiographic OA status. Ann Rheum Dis. 2008 Jul 7 (in press).Google Scholar
  26. 26.
    Kothari M, Guermazi A, von Ingersleben G, Miaux Y, Sieffert M, Block JE, et al. Fixed-flexion radiography of the knee provides reproducible joint space width measurements in osteoarthritis. Eur Radiol 2004; 14(9): 1568–1573.PubMedCrossRefGoogle Scholar
  27. 27.
    Kass M, Witkin A, Terzopoulos D. Snakes: active contour models. Int J Comput Vis 1987; 1(4): 321–331.CrossRefGoogle Scholar
  28. 28.
    Gluer CC, Blake G, Lu Y, Blunt BA, Jergas M, Genant HK. Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 1995; 5(4): 262–270.PubMedCrossRefGoogle Scholar
  29. 29.
    Eckstein F, Heudorfer L, Faber SC, Burgkart R, Englmeier KH, Reiser M. Long-term and resegmentation precision of quantitative cartilage MR imaging (qMRI). Osteoarthr Cartil 2002; 10(12): 922–928.PubMedCrossRefGoogle Scholar
  30. 30.
    Eckstein F, Charles HC, Buck RJ, Kraus VB, Remmers AE, Hudelmaier M, et al. Accuracy and precision of quantitative assessment of cartilage morphology by magnetic resonance imaging at 3.0T. Arthritis Rheum 2005; 52(10): 3132–3136.PubMedCrossRefGoogle Scholar
  31. 31.
    Glaser C, Burgkart R, Kutschera A, Englmeier KH, Reiser M, Eckstein F. Femoro-tibial cartilage metrics from coronal MR image data: technique, test-retest reproducibility, and findings in osteoarthritis. Magn Reson Med 2003; 50(6): 1229–1236.PubMedCrossRefGoogle Scholar
  32. 32.
    Brem MH, Pauser J, Yoshioka H, Brenning A, Stratmann J, Hennig FF, et al. Longitudinal in vivo reproducibility of cartilage volume and surface in osteoarthritis of the knee. Skeletal Radiol 2007; 36(4): 315–320.PubMedCrossRefGoogle Scholar
  33. 33.
    Eckstein FCF, Raynauld JP, Waterton JC, Peterfy CG, eds. Magnetic resonance imaging (MRI) of articular cartilage in knee osteoarthritis (OA): Morphological assessment; 2006. Osteoarthr Cartil.Google Scholar
  34. 34.
    Koo S, Gold GE, Andriacchi TP. Consideration in measuring cartilage thickness using MRI: factors including reproducibility and accuracy. Osteoarthr Cartil 2005; 13: 782–789.PubMedCrossRefGoogle Scholar
  35. 35.
    Eckstein F, Buck RJ, Burstein D, Charles HC, Crim J, Hudelmaier M, et al. Precision of 3.0 Tesla quantitative magnetic resonance imaging of cartilage morphology in a multicentre clinical trial. Ann Rheum Dis 2008; 67(12): 1683–1688.PubMedCrossRefGoogle Scholar

Copyright information

© ISS 2009

Authors and Affiliations

  • M. H. Brem
    • 1
    • 6
  • P. K. Lang
    • 1
  • G. Neumann
    • 1
  • P. M. Schlechtweg
    • 1
  • E. Schneider
    • 2
    • 3
  • R. Jackson
    • 4
  • J. Yu
    • 4
  • C. B. Eaton
    • 5
  • F. F. Hennig
    • 6
  • H. Yoshioka
    • 1
  • G. Pappas
    • 1
  • J. Duryea
    • 1
    Email author
  1. 1.Department of RadiologyBrigham and Women’s HospitalBostonUSA
  2. 2.SciTrialsLLCRocky RiverUSA
  3. 3.The Cleveland Clinic, Imaging InstituteClevelandUSA
  4. 4.Diabetes and Metabolism and Radiology, Department of EndocrinologyThe Ohio State UniversityColumbusUSA
  5. 5.Memorial Hospital of Rhode IslandCenter for Primary Care and Prevention and the Warren Alpert Medical School of Brown UniversityProvidenceUSA
  6. 6.Division of Orthopaedic and Trauma Surgery, Department of SurgeryFriedrich-Alexander-University Erlangen NurembergErlangenGermany

Personalised recommendations