Skeletal Radiology

, Volume 37, Issue 6, pp 541–548

Laws’ masks descriptors applied to bone texture analysis: an innovative and discriminant tool in osteoporosis

  • M. Rachidi
  • A. Marchadier
  • C. Gadois
  • E. Lespessailles
  • C. Chappard
  • C. L. Benhamou
Scientific Article

Abstract

Objective

The objective of this study was to explore Laws’ masks analysis to describe structural variations of trabecular bone due to osteoporosis on high-resolution digital radiographs and to check its dependence on the spatial resolution. Laws’ masks are well established as one of the best methods for texture analysis in image processing and are used in various applications, but not in bone tissue characterisation. This method is based on masks that aim to filter the images. From each mask, five classical statistical parameters can be calculated.

Materials and methods

The study was performed on 182 healthy postmenopausal women with no fractures and 114 age-matched women with fractures [26 hip fractures (HFs), 29 vertebrae fractures (VFs), 29 wrist fractures (WFs) and 30 other fractures (OFs)]. For all subjects radiographs were obtained of the calcaneus with a new high-resolution X-ray device with direct digitisation (BMA, D3A, France). The lumbar spine, femoral neck, and total hip bone mineral density (BMD) were assessed by dual-energy X-ray absorptiometry.

Results

In terms of reproducibility, the best results were obtained with the TRE5E5 mask, especially for three parameters: “mean”, “standard deviation” and “entropy” with, respectively, in vivo mid-term root mean square average coefficient of variation (RMSCV)% = 1.79, 4.24 and 2.05. The “mean” and “entropy” parameters had a better reproducibility but “standard deviation” showed a better discriminant power. Thus, for univariate analysis, the difference between subjects with fractures and controls was significant (P < 10−3) and significant for each fracture group independently (P < 10−4 for HF, P = 0.025 for VF and P < 10−3 for OF). After multivariate analysis with adjustment for age and total hip BMD, the difference concerning the “standard deviation” parameter remained statistically significant between the control group and the HF and VF groups (P < 5 × 10−5, and P = 0.04, respectively). No significant correlation between these Laws’ masks parameters and BMD was obtained. In addition, this study showed the dependence of Laws’ masks parameters on image resolution, which confirms the necessity to perform Laws’ textural measurement on high-resolution images.

Conclusion

The reproducibility and discriminant power of the Laws’ masks analysis has been demonstrated on bone images; thus, this method constitutes a promising routine technique for the determination of osteoporosis fracture risk from radiographs.

Keywords

Laws’ masks Texture analysis Trabecular bone Calcaneus radiographs Osteoporosis 

References

  1. 1.
    NIH. Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy, Osteoporosis Prevention, Diagnosis, and Therapy. JAMA 2001; 285: 785–795.Google Scholar
  2. 2.
    Benhamou CL, Roux C. Bone architecture. Editorial bone quality seminars. Osteoporos Int 2007; 18: 837.CrossRefGoogle Scholar
  3. 3.
    Benhamou CL. Texture analysis on bone radiographs. Bone quality seminars. Osteoporos Int 2007; 18: 864–867.Google Scholar
  4. 4.
    Felsenberg D, Boonen S. The bone quality framework: determinants of bone strength and their interrelationships, and implications for osteoporosis management. Clin Ther 2005; 27: 1–11.PubMedCrossRefGoogle Scholar
  5. 5.
    Schuit SCE, Klift MV, Weel AEM, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 2004; 34: 195–202.PubMedCrossRefGoogle Scholar
  6. 6.
    Bousson V. QCT, pQCT, microCT, and bone architecture. Bone quality seminars. Osteoporos Int 2007; 18: 867–871.Google Scholar
  7. 7.
    Wehrli FW. Characterization of bone microarchitecture by MRI in vitro an in vivo. Bone quality seminars. Osteoporos Int 2007; 18: 850–859.Google Scholar
  8. 8.
    Kothari M, Keaveny TM, Lin JC, Newitt DC, Genant HK, Majumdar S. Impact of spatial resolution on the prediction of trabecular architecture parameters. Bone 1998; 22: 437–443.PubMedCrossRefGoogle Scholar
  9. 9.
    Benhamou CL, Poupon S, Lespessailles E, et al. Fractal analysis of radiographic trabecular bone texture and bone mineral density: two complementary parameters related to osteoporotic fractures. J Bone Miner Res 2001; 16: 697–704.PubMedCrossRefGoogle Scholar
  10. 10.
    Chappard C, Imbault BB, Lemineur G, et al. Anisotropy changes in post-menopausal osteoporosis: characterization by a new index applied to trabecular bone radiographic images. Osteoporos Int 2005; 16: 1193–1202.PubMedCrossRefGoogle Scholar
  11. 11.
    Lespessailles E, Gadois C, Lemineur G, Do-Huu JP, Benhamou L. Bone texture analysis on direct digital radiographic images: precision study and relationship with bone mineral density at the os calcis. Calcif Tissue Int 2007; 80: 97–102.PubMedCrossRefGoogle Scholar
  12. 12.
    Laws KI. Rapid texture identification. Proc SPIE 1980; 238: 376–380.Google Scholar
  13. 13.
    Habib HA, Yousaf MH, Mohibullah M. Modified Laws energy descriptor for inspection of ceramic tiles. National Conference on Emerging Technologies 2004.Google Scholar
  14. 14.
    Singh M, Singh S. Spatial texture analysis: a comparative study. Pattern Recognition, Proceedings, 16th International Conference 2002; 1: 676–679.Google Scholar
  15. 15.
    Mougiakakou SG, Golimati S, Gousias I, Nicolaides AN, Nikita KS. Computer-aided diagnosis of carotid atherosclerosis based on ultrasound image statistics, Laws’ texture and neural networks. Ultrasound Med Biol 2007; 33: 26–36.PubMedCrossRefGoogle Scholar
  16. 16.
    Polakowski WE, Cournoyer DA, Rogers SK, et al. Computer-aided breast cancer detection and diagnosis of masses using difference of Gaussians and derivative-based feature saliency. IEEE Trans Med Imaging 1997; 16: 811–819.PubMedCrossRefGoogle Scholar
  17. 17.
    Vince DG, Dixon KJ, Cothren RM, Cornhill JF. Comparison of texture analysis methods for the characterization of coronary plaques in intravascular ultrasound images. Comput Med Imaging Graph 2000; 24: 221–229.PubMedCrossRefGoogle Scholar
  18. 18.
    Christodoulou CI, Pittichis CS, Pantziaris M, Nicolaides A. Texture based classification of atherosclerotic carotid plaques. IEEE Trans Med Imaging 2003; 22: 902–912.PubMedCrossRefGoogle Scholar
  19. 19.
    Ananthaa M, Mossb RH, Stoecker WV. Detection of pigment network in dermatoscopy images using texture analysis. Comput Med Imaging Graph 2004; 28: 225–234.CrossRefGoogle Scholar
  20. 20.
    Smyth PP, Adams JE, Whitehouse RW, Taylor CJ. Application of computer texture analysis to the Singh index. Br J Radiol 1997; 70: 242–247.PubMedGoogle Scholar
  21. 21.
    Benhamou CL, Lespessailles E, Jacquet G, et al. Fractal organisation of trabecular bone images on calcaneus radiographs. J Bone Miner Res 1994; 9: 1909–1918.PubMedCrossRefGoogle Scholar
  22. 22.
    Gluer CC, Blake G, Lu Y, Blunt A, Jergas M, Genant HK. Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 1995; 5: 262–270.PubMedCrossRefGoogle Scholar
  23. 23.
    Wehrli FW, Song HK, Saha PK, Wright AC. Quantitative MRI for the assessment of bone structure and function. NMR Biomed 2006; 19: 731–764.PubMedCrossRefGoogle Scholar
  24. 24.
    Cortet B, Colin D, Dubois P, Delcambre B, Marchandise X. Les différentes méthodes d’analyse quantitative de la structure osseuse trabéculaire. Rev Rhum (Ed Fr) 1995; 62: 841–855.Google Scholar
  25. 25.
    Vokes TJ, Giger ML, Chinander MR, Karrison TG, Favus MJ, Dixon LB. Radiographic texture analysis of densitometer-generated calcaneus images differentiates postmenopausal women with and without fractures. Osteoporos Int 2006; 17: 1472–1482.PubMedCrossRefGoogle Scholar
  26. 26.
    Lespessailles E, Jullien A, Eynard E, et al. Biomechanical properties of human os calcanei: relationships with bone density and fractal evaluation of bone microarchitecture. J Biomech 1998; 31: 817–824.PubMedCrossRefGoogle Scholar
  27. 27.
    Link TM, Majumdar S, Lin JC, et al. Assessment of trabecular structure using high-resolution CT images and texture analysis. J Comput Assist Tomogr 1998; 22: 15–24.PubMedCrossRefGoogle Scholar
  28. 28.
    Laws KI. Textured image segmentation. PhD Dissertation, University of Southern California. Los Angeles, California 1980.Google Scholar
  29. 29.
    Chaudhuri BB, Nirupam S. Texture segmentation using fractal dimension. IEEE Trans Pattern Anal Mach Intell 1995; 17: 72–77.CrossRefGoogle Scholar
  30. 30.
    Pappas JC, Mojsilovic TN, Rogowitz A. Adaptative image segmentation based on color and texture. Proceedings of the 2002 International Conference on Image Processing vol 3, pp. 777–780.Google Scholar
  31. 31.
    Harris DE. Texture analysis of skin cancer images. PhD Dissertation. University of Missouri-Rolla 1994.Google Scholar

Copyright information

© ISS 2008

Authors and Affiliations

  • M. Rachidi
    • 1
    • 5
  • A. Marchadier
    • 2
  • C. Gadois
    • 4
  • E. Lespessailles
    • 3
  • C. Chappard
    • 1
  • C. L. Benhamou
    • 1
  1. 1.INSERM Unit U658Orleans HospitalOrleansFrance
  2. 2.IPROSOrleans HospitalOrleansFrance
  3. 3.Ipros-service de Rhumatologie CHR d’OrléansOrleansFrance
  4. 4.D3A® Medical SystemsOrleansFrance
  5. 5.INSERM-U658. IPROS Hôpital Porte MadeleineOrléansFrance

Personalised recommendations