Skeletal Radiology

, Volume 37, Issue 2, pp 95–97 | Cite as

Magnetic resonance imaging for osteoporosis

Perspective

References

  1. 1.
    Gasser JA, Ingold P, Grosios K, Laib A, Hammerle S, Koller B. Noninvasive monitoring of changes in structural cancellous bone parameters with a novel prototype micro-CT. J Bone Miner Metab 2005; 23 Suppl: 90–96.PubMedCrossRefGoogle Scholar
  2. 2.
    Boutroy S, Bouxsein ML, Munoz F, Delmas PD. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 2005; 90 12: 6508–6515.PubMedCrossRefGoogle Scholar
  3. 3.
    Majumdar S, Genant HK. In vivo relationship between marrow T2* and trabecular bone density determined with a chemical shift-selective asymmetric spin-echo sequence. J Magn Reson Imaging 1992; 2 2: 209–219.PubMedCrossRefGoogle Scholar
  4. 4.
    Majumdar S, Newitt D, Mathur A, et al. Magnetic resonance imaging of trabecular bone structure in the distal radius: relationship with X-ray tomographic microscopy and biomechanics. Osteoporos Int 1996; 6 5: 376–385.PubMedCrossRefGoogle Scholar
  5. 5.
    Hwang SN, Wehrli FW, Williams JL. Probability-based structural parameters from three-dimensional nuclear magnetic resonance images as predictors of trabecular bone strength. Med Phys 1997; 24 8: 1255–1261.PubMedCrossRefGoogle Scholar
  6. 6.
    Majumdar S, Genant H, Grampp S, et al. Correlation of trabecular bone structure with age, bone mineral density and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging. J Bone Miner Res 1997; 12: 111–118.PubMedCrossRefGoogle Scholar
  7. 7.
    Link TM, Majumdar S, Augat P, et al. In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients. J Bone Miner Res 1998; 13 7: 1175–1182.PubMedCrossRefGoogle Scholar
  8. 8.
    Majumdar S, Link T, Augat P, et al. Trabecular bone architecture in the distal radius using MR imaging in subjects with fractures of the proximal femur. Osteoporos Int 1999; 10: 231–239.PubMedCrossRefGoogle Scholar
  9. 9.
    Laib A, Newitt DC, Lu Y, Majumdar S. New model-independent measures of trabecular bone structure applied to in vivo high-resolution MR images. Osteoporos Int 2002; 13 2: 130–136.PubMedCrossRefGoogle Scholar
  10. 10.
    Boutry N, Cortet B, Dubois P, Marchandise X, Cotten A. Trabecular bone structure of the calcaneus: preliminary in vivo MR imaging assessment in men with osteoporosis. Radiology 2003; 227 3: 708–717.PubMedCrossRefGoogle Scholar
  11. 11.
    Chesnut CH III, Majumdar S, Newitt DC, et al. Effects of salmon calcitonin on trabecular microarchitecture as determined by magnetic resonance imaging: results from the QUEST study. J Bone Miner Res 2005; 20 9: 1548–1561.PubMedCrossRefGoogle Scholar
  12. 12.
    Benito M, Gomberg B, Wehrli FW, et al. Deterioration of trabecular architecture in hypogonadal men. J Clin Endocrinol Metab 2003; 88 4: 1497–1502.PubMedCrossRefGoogle Scholar
  13. 13.
    Benito M, Vasilic B, Wehrli FW, et al. Effect of testosterone replacement on trabecular architecture in hypogonadal men. J Bone Miner Res 2005; 20 10: 1785–1791.PubMedCrossRefGoogle Scholar
  14. 14.
    Krug R, Banerjee S, Han ET, Newitt DC, Link TM, Majumdar S. Feasibility of in vivo structural analysis of high-resolution magnetic resonance images of the proximal femur. Osteoporos Int 2005; 16 11: 1307–1314.PubMedCrossRefGoogle Scholar
  15. 15.
    Banerjee S, Carballido-Gamio J, Lupo J, et al. Autocalibrating parallel imaging at 7T-high resolution, quantitative and phase-sensitive applications. In: ISMRM; 2006; Seattle; 2006.Google Scholar
  16. 16.
    Hogler W, Blimkie CJ, Cowell CT, et al. A comparison of bone geometry and cortical density at the mid-femur between prepuberty and young adulthood using magnetic resonance imaging. Bone 2003; 33 5: 771–778.PubMedCrossRefGoogle Scholar
  17. 17.
    Reichert IL, Robson MD, Gatehouse PD, et al. Magnetic resonance imaging of cortical bone with ultrashort TE pulse sequences. Magn Reson Imaging 2005; 23 5: 611–618.PubMedCrossRefGoogle Scholar
  18. 18.
    Wehrli FW. Structural and functional assessment of trabecular and cortical bone by micro magnetic resonance imaging. J Magn Reson Imaging 2007; 25 2: 390–409.PubMedCrossRefGoogle Scholar
  19. 19.
    Wehrli FW, Leonard MB, Saha PK, Gomberg BR. Quantitative high-resolution magnetic resonance imaging reveals structural implications of renal osteodystrophy on trabecular and cortical bone. J Magn Reson Imaging 2004; 20 1: 83–89.PubMedCrossRefGoogle Scholar
  20. 20.
    Wu Y, Ackerman JL, Chesler DA, Graham L, Wang Y, Glimcher MJ. Density of organic matrix of native mineralized bone measured by water- and fat-suppressed proton projection MRI. Magn Reson Med 2003; 50 1:59–68.PubMedCrossRefGoogle Scholar
  21. 21.
    Wu Y, Ackerman JL, Kim HM, Rey C, Barroug A, Glimcher MJ. Nuclear magnetic resonance spin-spin relaxation of the crystals of bone, dental enamel, and synthetic hydroxyapatites. J Bone Miner Res 2002; 17 3: 472–480.PubMedCrossRefGoogle Scholar
  22. 22.
    Wu Y, Ackerman JL, Strawich ES, Rey C, Kim HM, Glimcher MJ. Phosphate ions in bone: identification of a calcium-organic phosphate complex by 31P solid-state NMR spectroscopy at early stages of mineralization. Calcif Tissue Int 2003; 72 5: 610–626.PubMedCrossRefGoogle Scholar

Copyright information

© ISS 2007

Authors and Affiliations

  1. 1.Musculoskeletal and Quantitative Imaging Research Group, Department of RadiologyUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations