Advertisement

Skeletal Radiology

, Volume 35, Issue 11, pp 805–813 | Cite as

Molecular pathology of chondroid neoplasms: part 1, benign lesions

  • W. C. Bell
  • M. J. Klein
  • M. J. Pitt
  • G. P. SiegalEmail author
Review Article

Abstract

This two-part review presents an overview of the molecular findings associated with both benign and malignant chondroid neoplasms. This first part presents a brief review of methods in molecular pathology along with a review of the cytogenetic and molecular genetic findings in benign chondroid neoplasms. Clinical aspects of the various lesions are briefly discussed, and each tumor is illustrated with representative radiographic and pathologic images. Malignant chondroid neoplasms will be considered in the second part of this review.

Keywords

Bizarre parosteal osteochondromatous proliferation Cytogenetics Molecular genetics Chondroma Chondromyxoid fibroma Chondroblastoma Osteochondroma 

References

  1. 1.
    Caspersson T, Zech L, Johansson C, Lindsten J, Hulten M. Fluorescent staining of heteropycnotic chromosome regions in human interphase nuclei. Exp Cell Res 1970;61(2):472–4.PubMedCrossRefGoogle Scholar
  2. 2.
    Harper ME, Saunders GF. Localization of single copy DNA sequences of G-banded human chromosomes by in situ hybridization. Chromosoma 1981;83(3):431–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Pinkel D, Straume T, Gray JW. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Nat Acad Sci USA 1986;83(9):2934–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Schrock E, du Manoir S, Veldman T, Schoell B, Wienberg J, Ferguson-Smith MA, et al. Multicolor spectral karyotyping of human chromosomes. Science 1996;273(5274):494–7.PubMedGoogle Scholar
  5. 5.
    Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 1992;258:818–21.PubMedCrossRefGoogle Scholar
  6. 6.
    Burnette WN. “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 1981;112:195–203.PubMedCrossRefGoogle Scholar
  7. 7.
    Grizzle WE, Myers RB, Manne U, Srivastava S. Immunohistochemical evaluation of biomarkers in prostatic and colorectal neoplasia. In: Hanausek M, Walaszek Z (eds) Methods in molecular medicine-tumor marker protocols, Humana Press, Totowa, NJ, 1998;pp. 143–60.Google Scholar
  8. 8.
    Hutchen TW, Yip TT. New desorption strategies for the mass spectrometric analysis of macromolecules. Rapid Commun Mass Spectrom 1993;7:576–80.CrossRefGoogle Scholar
  9. 9.
    1 Fechner RE, Mills SE. Cartilaginous lesions. In: Atlas of tumor pathology, tumors of the bones and joints. Armed Forces Institute Pathol 1993;pp 79–128.Google Scholar
  10. 10.
    Bridge JA, Persons DL, Neff JR, Bhatia P. Clonal karyotypic aberrations in enchondroma. Cancer Detec Prev 1992;16(4):215–19.PubMedGoogle Scholar
  11. 11.
    Sawyer JR, Swanson CM, Lukacs JL, Nicholas RW, North PE, Thomas JR. Evidence of an association between 6q13–21 chromosome aberrations and locally aggressive behavior in patients with cartilage tumors. Cancer 1998;82(3):474–83.PubMedCrossRefGoogle Scholar
  12. 12.
    Buddingh EP, Naumann S, Nelson M, Neffa JR, Birch N, Bridge JA. Cytogenetic findings in benign cartilaginous neoplasms. Cancer Gene Cytogene 2003;141(2):164–8.CrossRefGoogle Scholar
  13. 13.
    Dal Cin P, Qi H, Sciot R, Van den Berghe H. Involvement of chromosomes 6 and 11 in a soft tissue chondroma. Cancer Gene Cytogene 1997;93(2):177–8.CrossRefGoogle Scholar
  14. 14.
    Shadan FF, Mascarello JT, Newbury RO, Dennis T, Spallone P, Stock AD. Supernumerary ring chromosomes derived from the long arm of chromosome 12 as the primary cytogenetic anomaly in a rare soft tissue chondroma. Cancer Gene Cytogene 2000;118(2):144–7.CrossRefGoogle Scholar
  15. 15.
    Dahlen A, Mertens F, Rydholm A, Brosjo O, Wejde J, Mandahl N, et al. Fusion, disruption, and expression of HMGA2 in bone and soft tissue chondromas. Mod Pathol 2003;16:1132–40.PubMedCrossRefGoogle Scholar
  16. 16.
    Ozaki T, Wai D, Schafer KL, Lindner N, Bocker W, Winkelmann W, Dockhorn-Dworniczak B. Poremba C. Comparative genomic hybridization in cartilaginous tumors. Anticancer Res 2004;24:1721–25.PubMedGoogle Scholar
  17. 17.
    Rozeman LB, Hameetman L, Cleton-Jansen AM, Taminiau AH, Hogendoorn PC, Bovee JV. Absence of IHH and retention of PTHrP signalling in enchondromas and central chondrosarcomas. J Pathol 2005;205(4):476–82.PubMedCrossRefGoogle Scholar
  18. 18.
    Ozisik YY, Meloni AM, Spanier SS, Bush CH, Kingsley KL, Sandberg AA. Deletion 1p in a low-grade chondrosarcoma in a patient with Ollier disease. Cancer Gene Cytogene 1998;105:128–33.CrossRefGoogle Scholar
  19. 19.
    Amling M, Posl M, Hentz MW, Priemel M, Delling G. PTHrP an Bcl–2: essential regulatory molecules in chondrocyte differentiation and chondrogenic tumors. Verh Dtsch 1998;82:160–9.Google Scholar
  20. 20.
    Rozeman LB, Sangiorgi L, Briaire-de Bruijn IH, Mainil-Varlet P, Bertoni F, Cleton-Jansen AM, et al. Enchondromatosis (Ollier disease, Maffucci syndrome) is not caused by the PTHR1 mutation p.R150C. Human Mutat 2004;24(6):466–73.CrossRefGoogle Scholar
  21. 21.
    Hopyan S, Gokgoz N, Poon R, Gensure RC, Yu C, Cole WG, et al. A mutant PTH/PTHrP type I receptor in enchondromatosis. Nat Genet 2002;30(3):306–10.PubMedCrossRefGoogle Scholar
  22. 22.
    Kusuzaki K, Murata H, Takeshita H, Hirata M, Hashiguchi S, Tsuji Y, et al. Mod Pathol 1999;12(9):863–72.PubMedGoogle Scholar
  23. 23.
    Bridge JA, Nelson M, Orndal C, Bhatia P, Neff JR. Clonal karyotypic abnormalities of the hereditary multiple exostoses chromosomal loci 8q24.1 (EXT1) and 11p11–12 (EXT2) in patients with sporadic and hereditary osteochondroma. Cancer 1998;82:1657–63.PubMedCrossRefGoogle Scholar
  24. 24.
    Wuyts W, Van Hul W. Molecular basis of multiple exostoses: mutations in the EXT1 and EXT2 genes. Human Mutat 2000;15:220–7.CrossRefGoogle Scholar
  25. 25.
    Bernard MA, Hall CE, Hogue DA, Cole WG, Scott A, et al. Diminished levels of the putative tumor suppressor proteins EXT1 and EXT2 in exostoses chondrocytes. Cell Motil Cytoskelet 2001;48:149–62.CrossRefGoogle Scholar
  26. 26.
    Wuyts W, Van Hul W, Wauters J, Nemtsova M, et al. Postitional cloning of a gene involved in hereditary multiple exostoses. Hum Mol Gene 1996;5:1547–57.CrossRefGoogle Scholar
  27. 27.
    Ahn J, Ludecke H, Lindow S, Horton WA, Lee B, Wagner MJ, et al. Cloning of the putative tumour suppressor gene for hereditary multiple exostoses (EXT1). Nat Gene 1995;11:137–43.CrossRefGoogle Scholar
  28. 28.
    McCormick C, Duncan G, Goutsos T, Tufaro F. The putative tumor suppressors EXT1 and EXT2 form a stable complex that accumulates in the Golgi apparatus and catalyzes the synthesis of heparin sulfate. Proc Nat Acad Sci USA 2000;97:668–73.PubMedCrossRefGoogle Scholar
  29. 29.
    Duncan G, McCormick C, Tufaro F. The link between heparin sulfate and hereditary bone disease: finding a function for the EXT family of putative tumor suppressor proteins. J Clin Invest 2001;108:511–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Lin X, Wei G, Shi Z, Dryer L, Esko JD, Wells DE, et al. Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-deficient mice. Dev Biol 2000;224:299–311.PubMedCrossRefGoogle Scholar
  31. 31.
    Sjogren H, Orndal C, Tingby O, Meis-Kindblom JM, Kindblom LG, Stenman G. Cytogenetic and spectral karyotype analyses of benign and malignant cartilage tumours. Int J Oncol 2004;24:1385–91.PubMedGoogle Scholar
  32. 32.
    Halbert AR, Harrison WR, Hicks MJ, Davino N, Cooley LD. Cytogenetic analysis of a scapular chondromyxoid fibroma. Cancer Gene Cytogene 1998;104:52–6.CrossRefGoogle Scholar
  33. 33.
    Granter SR, Renshaw AA, Kozadewich HP, Fletcher JA. The pericentromeric inversion, inv (6)(p25q13), is a novel diagnostic marker in chondromyxoid fibroma. Mod Pathol 1998;11:1071–74.PubMedGoogle Scholar
  34. 34.
    Safar A, Nelson M, Neff JR, Maale GE, Bayani J, Squire J, et al. Recurrent anomalies of 6q25 in chondromyxoid fibroma. Human Pathol 2000;31:306–11.CrossRefGoogle Scholar
  35. 35.
    Romeo S, Bovee JV, Grogan SP, Taminiau AH, Eilers PH, Cleton-Jansen AM, et al. Chondromyxoid fibroma resembles in vitro chondrogenesis, but differs in expression of signalling molecules. J Pathol 2005;206:135–42.PubMedCrossRefGoogle Scholar
  36. 36.
    Swarts SJ, Neff JR, Johansson SL, Nelson M, Bridge JA. Significance of abnormalities of chromosomes 5 and 8 in chondroblastoma. Clin Orthop Relat Res 1998;349:189–93.PubMedCrossRefGoogle Scholar
  37. 37.
    van Zelderen-Bhola SL, Bovee JV, Wessels HW, Mollevanger P, Nijhuis JV, van Eendenburg JD, et al. Ring chromosome 4 as the sole cytogenetic anomaly in a chondroblastoma: a case report and review of the literature. Cancer Gene Cytogene 1998;105:109–12.CrossRefGoogle Scholar
  38. 38.
    Aigner T, Loos S, Inwards C, Perris R, Perissinotto D, Unni KK, et al. Chondroblastoma is an osteoid-forming, but not cartilage-forming neoplasm. J Pathol 1999;189:463–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Nora FE, Dahlin DC, Beabout JW. Bizarre parosteal osteochondromatous proliferations of the hands and feet. Am J Surg Pathol 1983;51:245–50.CrossRefGoogle Scholar
  40. 40.
    Nilsson M, Domanski HA, Mertens F, Mandahl N. Molecular cytogenetic characterization of recurrent translocation breakpoints in bizarre parosteal osteochondromatous proliferation (Nora’s lesion). Hum Pathol 2004;35:1063–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Zambrano E, Nose V, Perez-Atayde AR, Gebhardt M, Hresko MT, Kleinman P, et al. Distinct chromosomal rearrangements in subungual (Dupuytren) exostosis and bizarre parosteal osteochondromatous proliferation (Nora’s lesion). Am J Surg Pathol 2004;28:1033–9.PubMedGoogle Scholar

Copyright information

© ISS 2006

Authors and Affiliations

  • W. C. Bell
    • 1
  • M. J. Klein
    • 2
  • M. J. Pitt
    • 3
  • G. P. Siegal
    • 4
    Email author
  1. 1.Department of PathologyUniversity of Alabama at BirminghamBirminghamUSA
  2. 2.Departments of Pathology and Diagnostic Radiology, and the Center for Metabolic Bone DiseaseUniversity of Alabama at BirminghamBirminghamUSA
  3. 3.Department of Diagnostic Radiology, and the Center for Metabolic Bone DiseaseUniversity of Alabama at BirminghamBirminghamUSA
  4. 4.Departments of Pathology, Cell Biology, and Surgery, and the Center for Metabolic Bone DiseaseUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations