Advertisement

Skeletal Radiology

, Volume 34, Issue 5, pp 245–259 | Cite as

Distinguishing stress fractures from pathologic fractures: a multimodality approach

  • Laura M. FayadEmail author
  • Ihab R. Kamel
  • Satomi Kawamoto
  • David A. Bluemke
  • Frank J. Frassica
  • Elliot K. Fishman
Review Article

Abstract

Whereas stress fractures occur in normal or metabolically weakened bones, pathologic fractures occur at the site of a bone tumor. Unfortunately, stress fractures may share imaging features with pathologic fractures on plain radiography, and therefore other modalities are commonly utilized to distinguish these entities. Additional cross-sectional imaging with CT or MRI as well as scintigraphy and PET scanning is often performed for further evaluation. For the detailed assessment of a fracture site, CT offers a high-resolution view of the bone cortex and periosteum which aids the diagnosis of a pathologic fracture. The character of underlying bone marrow patterns of destruction can also be ascertained along with evidence of a soft tissue mass. MRI, however, is a more sensitive technique for the detection of underlying bone marrow lesions at a fracture site. In addition, the surrounding soft tissues, including possible involvement of adjacent muscle, can be well evaluated with MRI. While bone scintigraphy and FDG-PET are not specific, they offer a whole-body screen for metastases in the case of a suspected malignant pathologic fracture. In this review, we present select examples of fractures that underscore imaging features that help distinguish stress fractures from pathologic fractures, since accurate differentiation of these entities is paramount.

Keywords

Positron Emission Tomography Stress Fracture Pathologic Fracture Insufficiency Fracture Chemical Shift Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Pentecost RL, Murray RA, Brindley HH. Fatigue, insufficiency, and pathologic fractures. JAMA 1964;187:1001–1004.PubMedGoogle Scholar
  2. 2.
    Blatz DJ. Bilateral femoral and tibial shaft stress fractures in a runner. Am J Sports Med 1981; 9:322–325.Google Scholar
  3. 3.
    Orava S, Jormakka E, Hulkko A. Stress fractures in young athletes. Arch Orthop Trauma Surg 1981; 98:271–274.CrossRefPubMedGoogle Scholar
  4. 4.
    Korpelainen R, Orava S, Karpakka J, Siira P, Hulkko A. Risk factors for recurrent stress fractures in athletes. Am J Sports Med 2000; 29:304–310.Google Scholar
  5. 5.
    Schickendantz MS, Ho CP, Koh J. Stress injury of the proximal ulna in professional baseball players. Am J Sports Med 2002; 30:737–741.PubMedGoogle Scholar
  6. 6.
    Hulkko A, Orava S. Stress fractures in athletes. Int J Sports Med 1987; 8:221–226.PubMedGoogle Scholar
  7. 7.
    Shon IH, Fogelman I. F-18 FDG positron emission tomography and benign fractures. Clin Nucl Med 2003; 28:171–175.CrossRefPubMedGoogle Scholar
  8. 8.
    Meyer M, Gast T, Raja S, Hubner K. Increased F-18 accumulation in an acute fracture. Clin Nucl Med 1994; 19:13–14.PubMedGoogle Scholar
  9. 9.
    Wilcox JR, Moniot AL, Green P. Bone scanning in the evaluation of exercise related stress injuries. Radiology 1977; 123:699–703.PubMedGoogle Scholar
  10. 10.
    Deutsch AL, Coel MN, Mink JH. Imaging of stress injuries to bone. Radiography, scintigraphy, and MR imaging. Clin Sports Med 1997;16:275–290.PubMedGoogle Scholar
  11. 11.
    Fayad LM, Cohade C, Wahl RL, Fishman EK. Sacral fractures: a potential pitfall of FDG positron emission tomography. AJR Am J Roentgenol 2003; 181:1239–1243.PubMedGoogle Scholar
  12. 12.
    Soubrier M, Dubost JJ, Boisgard S, Sauvezie B, Gaillard P, Michel JL, Ristori JM. Insufficiency fracture. A survey of 60 cases and review of the literature. Joint Bone Spine 2003; 70:209–218.Google Scholar
  13. 13.
    Anderson MW, Ugalde V, Batt M, Gacayan J. Shin splints: MR appearance in a preliminary study. Radiology 1997; 204:177–180.PubMedGoogle Scholar
  14. 14.
    Umans HR, Kaye JJ. Longitudinal stress fractures of the tibia: diagnosis by magnetic resonance imaging. Skeletal Radiol 1996; 25:319–324.CrossRefPubMedGoogle Scholar
  15. 15.
    Allen GJ. Longitudinal stress fractures of the tibia: diagnosis with CT. Radiology 1988; 167:799–801.PubMedGoogle Scholar
  16. 16.
    Resnick D, Goergen TG, Pathria MN. Physical Injury. In: Resnick, D, ed. Bone and joint imaging, 2nd edn. Philadelphia: WB Saunders, 1996:723–815.Google Scholar
  17. 17.
    Buckwalter JA, Brandser EA. Stress and insufficiency fractures. Am Fam Physician 1997; 56:175–182.PubMedGoogle Scholar
  18. 18.
    Shearman CM, Brandser EA, Parman LM, et al. Longitudinal tibial stress fractures: a report of eight cases and review of the literature. J Comput Assist Tomogr 1998; 22:265–269.Google Scholar
  19. 19.
    Pauleit D, Sommer T, Textor J, et al. MRI diagnosis in longitudinal stress fractures: differential diagnosis of Ewing sarcoma. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 1999; 170:28–34.PubMedGoogle Scholar
  20. 20.
    Yuh WTC, Zachar CK, Barloon TJ, Sato Y, Sickels WJ, Hawes DR. Vertebral compression fractures: distinction between benign and malignant causes with MR imaging. Radiology 1989; 172:215–218.PubMedGoogle Scholar
  21. 21.
    Bertuna G, Fama P, Lo Nigro L, Russo-Mancuso G, Di Cataldo A. Marked osteoporosis and spontaneous vertebral fractures in children: don’t forget, it could be leukemia. Med Pediatr Oncol 2003; 41:450–454.Google Scholar
  22. 22.
    Yousem D, Magid D, Fishman EK, Kuhajda F, Siegelman SS. Computed tomography of stress fractures. J Comput Assist Tomogr 1986; 10:92–95.Google Scholar
  23. 23.
    Somer K, Meurman KO. Computed tomography of stress fractures. J Comput Assist Tomogr 1982; 6:109–115.Google Scholar
  24. 24.
    Murcia M, Brennan RE, Edeiken J. Computed tomography of stress fracture. Skeletal Radiol 1982; 8:193–195.CrossRefPubMedGoogle Scholar
  25. 25.
    Feydy A, Drape JL, Beret E, et al. Longitudinal stress fractures of the tibia: comparative study of CT and MR imaging. Eur Radiol 1998; 8:598–602.CrossRefPubMedGoogle Scholar
  26. 26.
    Spitz DJ, Newberg AH. Imaging of stress fractures in the athlete. Radiol Clin North Am 2002; 40:313–331.PubMedGoogle Scholar
  27. 27.
    Lingg GM, Soltesz I, Kessler S, Dreher R. Insufficiency and stress fractures of the long bones occurring in patients with rheumatoid arthritis and other inflammatory diseases, with a contribution on the possibilities of computed tomography. Eur J Radiol 1997; 26:54–63.CrossRefPubMedGoogle Scholar
  28. 28.
    Reinus WR, Gilula LA, Donaldson S, Shuster J, Glicksman A, Vietti TJ. Prognostic features of Ewing sarcoma on plain radiograph and computed tomography scan after initial treatment. A Pediatric Oncology Group study (8346). Cancer 1993; 72:2503–2510.PubMedGoogle Scholar
  29. 29.
    Murphey MD, wan Jaovisidha S, Temple HT, Gannon FH, Jelinek JS, Malawer MM. Telangiectatic osteosarcoma: radiologic-pathologic comparison. Radiology 2003; 229:545–553.PubMedGoogle Scholar
  30. 30.
    van der Woude HJ, Bloem JL, Verstraete KL, Taminiau AH, Nooy MA, Hogendoorn PC. Osteosarcoma and Ewing’s sarcoma after neoadjuvant chemotherapy: value of dynamic MR imaging in detecting viable tumor before surgery. AJR Am J Roentgenol 1995; 165:593–598.PubMedGoogle Scholar
  31. 31.
    Scott WW Jr, Fishman EK, Magid D. Acetabular fractures: optimal imaging. Radiology 1987; 165:537–539.PubMedGoogle Scholar
  32. 32.
    Newton PO, Hahn GW, Fricka KB, Wenger DR. Utility of three-dimensional and multiplanar reformatted computed tomography for evaluation of pediatric congenital spinal anomalies. Spine 2002; 27:844–850.CrossRefPubMedGoogle Scholar
  33. 33.
    Soderlund V, Radiological diagnosis of skeletal metastases. Eur Radiol 1996; 6:587–595.PubMedGoogle Scholar
  34. 34.
    Mirzaei S, Filipits M, Keck A, Bergmayer W, Knoll P, Koehn H, Ludwig Pecherstorfer M. Comparison of Technetium-99m MIBI imaging with MRI for detection of spine involvement in patients with multiple myeloma. BMC Nucl Med 2003; 3:2.CrossRefPubMedGoogle Scholar
  35. 35.
    Stafford SA, Rosenthal DI, Gebhardt MC, Brady TJ, Scott JA. MRI in stress fracture. AJR Am J Roentgenol 1986; 147:553–556.PubMedGoogle Scholar
  36. 36.
    Tyrrell PNM, Davies AM. Magnetic resonance imaging appearances of fatigue fractures of the long bones of the lower limb. Br J Radiol 1994; 67:332–338.PubMedGoogle Scholar
  37. 37.
    Cabitza P, Tamim H. Occult fractures of tibial plateau detected employing magnetic resonance imaging. Arch Orthop Trauma Surg 2000; 120:355–357.Google Scholar
  38. 38.
    Yamamoto T, Schneider R, Bullough PG. Subchondral insufficiency fracture of the femoral head: histopathologic correlation with MRI. Skeletal Radiol 2001; 30:247–254.CrossRefPubMedGoogle Scholar
  39. 39.
    Lee JK, Yao L. Stress fractures: MR imaging. Radiology 1988; 169:217–220.PubMedGoogle Scholar
  40. 40.
    Baur A, Stabler A, Arbogast S, Duerr HR, Bartl R, Reiser M. Acute osteoporotic and neoplastic vertebral compression fractures: fluid sign at MR imaging. Radiology 2002; 225:730–735.PubMedGoogle Scholar
  41. 41.
    Zampa V, Cosottini M, Michelassi C, Ortori S, Bruschini L, Bartolozzi C. Value of opposed-phase gradient-echo technique in distinguishing between benign and malignant vertebral lesions. Eur Radiol 2002; 12:1811–1818.Google Scholar
  42. 42.
    Disler DG, McCauley TR, Ratner LM, Kesack CD, Cooper JA. In-phase and out-of-phase MR imaging of bone marrow: prediction of neoplasia based on the detection of coexistent fat and water. AJR Am J Roentgenol 1997; 169:1439–1447.PubMedGoogle Scholar
  43. 43.
    Spuentrup E, Buecker A, Adam G, van Vaals JJ, Guenther RW. Diffusion-weighted MR imaging for differentiation of benign fracture edema and tumor infiltration of the vertebral body. AJR Am J Roentgenol 2001; 176:351–358.PubMedGoogle Scholar
  44. 44.
    Herneth AM, Phillip MO, Naude J, Funovics M, Beichel RR, Bammer R, Imhof H. Vertebral metastases: assessment with apparent diffusion coefficient. Radiology 2002; 225:889–894.PubMedGoogle Scholar
  45. 45.
    Oya N, Aoki J, Shinozaki T, Watanabe H, Takagishi K, Endo K. Preliminary study of proton magnetic resonance spectroscopy in bone and soft tissue tumors: an unassigned signal at 2.0–2.1 ppm may be a possible indicator of malignant neuroectodermal tumor. Radiat Med 20000; 18:193–198.Google Scholar
  46. 46.
    Hanna SL, Fletcher BD, Parham DM, Bugg MF. Muscle edema in musculoskeletal tumors: MR imaging characteristics and clinical significance. J Magn Reson Imaging 1991; 1:441–449.PubMedGoogle Scholar
  47. 47.
    Steinborn M, Heuck AF, Tiling R, Bruegel M, Gauger L, Reiser MF. Whole-body bone marrow MRI in patients with metastatic disease to the skeletal system. J Comput Assist Tomogr 1999; 23:123–129.CrossRefPubMedGoogle Scholar

Copyright information

© ISS 2005

Authors and Affiliations

  • Laura M. Fayad
    • 1
    Email author
  • Ihab R. Kamel
    • 1
  • Satomi Kawamoto
    • 1
  • David A. Bluemke
    • 1
  • Frank J. Frassica
    • 2
  • Elliot K. Fishman
    • 1
  1. 1.The Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins Medical InstitutionsBaltimoreUSA
  2. 2.Orthopaedic SurgeryJohns Hopkins Medical InstitutionsBaltimoreUSA

Personalised recommendations