Skeletal Radiology

, Volume 34, Issue 3, pp 149–155 | Cite as

Three-dimensional trabecular bone architecture of the lumbar spine in bone metastasis from prostate cancer: comparison with degenerative sclerosis

  • Tsutomu Tamada
  • Teruki Sone
  • Yoshimasa Jo
  • Shigeki Imai
  • Yasumasa Kajihara
  • Masao Fukunaga
Scientific Article

Abstract

Objective

Prostate cancer frequently metastasizes to bone, inducing osteosclerotic lesions. The objective of this study was to clarify the three-dimensional (3D) trabecular bone microstructure in bone metastasis from prostate cancer by comparison with normal and degenerative sclerotic bone lesions, using microcomputed tomography (micro-CT).

Design and materials

A total of 32 cancellous bone samples were excised from the lumbar spine of six autopsy patients: 15 metastatic samples (one patient), eight degenerative sclerotic samples (four patients) and the rest from normal sites (three patients). The samples were serially scanned cross-sectionally by micro-CT with a pixel size of 23.20 µm, slice thickness of 18.56 µm, and image matrix of 512×512. Each image data set consisted of 250 consecutive slices. The volumes of interest (96×96×120 voxels) were defined in the original image sets and 3D indices of the trabecular microstructure were determined.

Results

The trabecular thickness (Tb.Th) in degenerative sclerotic lesions was significantly higher than that in normal sites, whereas no significant difference was observed in trabecular number (Tb.N). By contrast, in metastatic lesions, the Tb.N was significantly higher with increased bone volume fraction (BV/TV) than in normal sites, and no significant difference was found in Tb.Th. The characteristics of the trabecular surface in the metastatic samples showed concave structural elements with an increase in BV/TV, indicating osteolysis of the trabecular bone. In 3D reconstructed images, increased trabecular bone with an irregular surface was observed in samples from metastatic sites, which were uniformly sclerotic on soft X-ray radiographs.

Conclusion

These results support, through 3D morphological features, the strong bone resorption effect in bone metastasis from prostate cancer.

Keywords

Microcomputed tomography (micro-CT) Trabecular bone Three-dimensional (3D) structure Bone metastases Prostate cancer Osteosclerosis 

References

  1. 1.
    Koutsilieris M. Osteoblastic metastasis in advanced prostate cancer. Anticancer Res 1993; 13:443–450.PubMedGoogle Scholar
  2. 2.
    Jacobs SC. Spread of prostatic cancer to bone. Urology 1983; 21:337–344.CrossRefPubMedGoogle Scholar
  3. 3.
    Charhon SA, Chapuy MC, Delvin EE, Valentin-Opran A, Edouard CM, Meunier PJ. Histomorphometric analysis of sclerotic bone metastases from prostatic carcinoma with special reference to osteomalacia. Cancer 1983; 51:918–924.PubMedGoogle Scholar
  4. 4.
    Aoki J, Yamamoto I, Hino M, et al. Sclerotic bone metastasis: radiologic-pathologic correlation. Radiology 1986; 159:127–132.PubMedGoogle Scholar
  5. 5.
    Clarke NW, McClure J, George NJR. Morphometric evidence for bone resorption and replacement in prostate cancer. Br J Urol 1991; 68:74–80.PubMedGoogle Scholar
  6. 6.
    Odgaard A, Gundersen HJG. Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions. Bone 1993; 14:173–182.PubMedGoogle Scholar
  7. 7.
    Parfitt AM, Drezner MK, Glorieux FH, et al. Bone histomorphometry: standardization of nomenclature, symbols, and units. J Bone Miner Res 1987; 2:595–610.PubMedGoogle Scholar
  8. 8.
    Hildebrand T, Rüegsegger P. A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc 1997; 185:67–75.CrossRefGoogle Scholar
  9. 9.
    Hahn M, Vogel M, Pompesius-Kempa M, Delling G. Trabecular bone pattern factor: a new parameter for simple quantification of bone microarchitecture. Bone 1992; 13:327–330.CrossRefPubMedGoogle Scholar
  10. 10.
    Whitehouse WJ. The quantitative morphology of anisotropic trabecular bone. J Microsc 1974; 101:153–168.PubMedGoogle Scholar
  11. 11.
    Müller R, Hahn M, Vogel M, Delling G, Rüegsegger P. Morphometric analysis of noninvasively assessed bone biopsies: comparison of high-resolution computed tomography and histologic sections. Bone 1996; 18:215–220.CrossRefPubMedGoogle Scholar
  12. 12.
    Jorgensen SM, Demirkaya O, Ritman EL. Three-dimensional imaging of vasculature and parenchyma in intact rodent organs with X-ray micro-CT. Am J Physiol 1998; 275:H1103―H1114.Google Scholar
  13. 13.
    Hildebrand T, Laib A, Müller R, Dequeker J, Rüegsegger P. Direct Three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Miner Res 1999; 14:1167–1174.Google Scholar
  14. 14.
    Müller R, Campenhout HV, Damme BV, et al. Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and micro-computed tomography. Bone 1998; 23:59–66.CrossRefPubMedGoogle Scholar
  15. 15.
    Adami S. Bisphosphonates in prostate carcinoma. Cancer. 1997; 80:1674–1679.Google Scholar
  16. 16.
    Galasko CS. Mechanisms of lytic and blastic metastatic disease of bone. Clin Orthop 1982; 169:20–27.PubMedGoogle Scholar
  17. 17.
    Tamada T, Sone T, Tomomitsu T, Jo Y, Tanaka H, Fukunaga M. Biochemical markers for the detection of bone metastasis in patients with prostate cancer: diagnostic efficacy and the effect of hormonal therapy. J Bone Miner Metab 2001; 19:45–51.CrossRefPubMedGoogle Scholar
  18. 18.
    Koizumi M, Maeda H, Yoshimura K, Yamauchi T, Kawai T, Ogata E. Dissociation of bone formation markers in bone metastasis of prostate cancer. Br J Cancer 1997; 75:1601–1604.PubMedGoogle Scholar
  19. 19.
    Takeuchi S, Arai K, Saitoh H, Yoshida K, Miura M. Urinary pyridinoline and deoxypyridinoline as potential markers of bone metastasis in patients with prostate cancer. J Urol 1996; 156:1691–1695.CrossRefPubMedGoogle Scholar
  20. 20.
    Koizumi M, Yamada Y, Takiguchi T, et al. Bone metabolic markers in bone metastases. J Cancer Res Clin Oncol 1995; 121:542–548.PubMedGoogle Scholar
  21. 21.
    Scher HI, Chung LWK. Bone metastases: improving the therapeutic index. Semin Oncol 1994; 21:630–656.PubMedGoogle Scholar
  22. 22.
    Percival RC, Urwin GH, Harris S, et al. Biochemical and histological evidence that carcinoma of the prostate is associated with increased bone resorption. Eur J Surg Oncol 1987; 13:41–49.PubMedGoogle Scholar
  23. 23.
    Urwin GH, Percival RC, Harris S, Beneton MNC, Williams JL, Kanis JA. Generalised increase in bone resorption in carcinoma of the prostate. Br J Urol 1985; 57:721–723.PubMedGoogle Scholar
  24. 24.
    Roudier MP, Vesselle H, True LD, Higano CS, Ott SM, King SH, Vessella RL. Bone histology at autopsy and matched bone scintigraphy findings in patients with hormone refractory prostate cancer: the effect of bisphosphonate therapy on bone scintigraphy results. Clin Exp Metastas 2003; 20:171–180.CrossRefGoogle Scholar
  25. 25.
    Roland SI. Calcium studies in ten cases of osteoblastic prostatic metastasis. J Urol 1958; 79:339–342.PubMedGoogle Scholar
  26. 26.
    Heidenreich A, Hofmann R, Engelmann UH. The use of bisphosphonate for the palliative treatment of painful bone metastasis due to hormone refractory prostate cancer. J Urol 2001; 165:136―140.CrossRefPubMedGoogle Scholar
  27. 27.
    Adami S. Salvagno G, Guarrera G, et al. Dichloromethylene-diphosphonate in patients with prostatic carcinoma metastatic to the skeleton. J Urol 1985; 134:1152–1154.PubMedGoogle Scholar
  28. 28.
    Percival RC, Watson ME, Williams JL, Kanis JA. Carcinoma of the prostate: remission of paraparesis with inhibitors of bone resorption. Postgrad Med J 1985; 61:551–553.PubMedGoogle Scholar
  29. 29.
    Kylmälä T, Tammela T, Risteli L, Risteli J, Taube T, Elomaa I. Evaluation of the effect of oral clodronate on skeletal metastases with type 1 collagen metabolites: a controlled trial of the Finnish prostate cancer group. Eur J Cancer 1993; 29:821–825.Google Scholar
  30. 30.
    Vinholes J, Guo C-Y, Purohit OP, Eastell R, Coleman RE. Metabolic effects of pamidronate in patients with metastatic bone disease. Br J Cancer 1996; 73;1089–1095.Google Scholar
  31. 31.
    Garnero P, Buchs N, Zekri J, Rizzoli R, Coleman RE, Delmas PD. Markers of bone turnover for the management of patients with bone metastases from prostate cancer. Br J Cancer 2000; 82:858–864.CrossRefPubMedGoogle Scholar

Copyright information

© ISS 2004

Authors and Affiliations

  • Tsutomu Tamada
    • 1
  • Teruki Sone
    • 1
  • Yoshimasa Jo
    • 2
  • Shigeki Imai
    • 1
  • Yasumasa Kajihara
    • 1
  • Masao Fukunaga
    • 1
  1. 1.Department of RadiologyKawasaki Medical SchoolKurashikiJapan
  2. 2.Department of UrologyKawasaki Medical SchoolKurashikiJapan

Personalised recommendations