Advertisement

Environmental Geology

, Volume 58, Issue 2, pp 347–357 | Cite as

Environmental and hydrogeological problems in karstic terrains crossed by tunnels: a case study

  • J. Gisbert
  • A. Vallejos
  • A. González
  • A. Pulido-Bosch
Special Issue

Abstract

The construction of one of the high-speed railway tunnels between Malaga and Córdoba (South Spain) beneath the Abdalajís mountains occasioned a series of hydrogeological problems with geotechnical and environmental impacts. The double tunnel, 7,300 m in length, runs south to north across several lines of small, calcareous mountains that have a highly complex structure. Beneath the Jurassic limestones lie Triassic clays and evaporites. Overlying the limestones is an essentially marly and limestone-marl Cretaceous series, which culminates with Miocene marls containing some organic matter. These mountains have generated springs that are used for urban water supply and irrigation, as well as drinking fountains in the surrounding villages. The initial water level in the aquifer series varied from 400 to 650 m above sea level. After drilling approximately 2,900 m, and intercepting a fracture zone within the carbonate rocks, a sudden water eruption occurred that reached a peak flow of 800 L/s. After a short while, spring discharges dried up, leading to a public protest. In this paper, we describe the geological and hydrogeological settings, the development of the aquifer as the drilling operation proceeded, the measures adopted and the responses subsequent to completion of the tunnel, including the effect of rainfall on the recovery of water levels. Lastly, a generalized estimate is made of how the system functions, and a forecast is made for recovery of its equilibrium.

Keywords

Tunnel Karstic aquifer Spring Water level 

Notes

Acknowledgments

We are grateful to the company ADIF and to Juan Amaury Gil Gandía for providing the hydrological data.

References

  1. Bakalowicz M (2005) Karst groundwater: a challenge for new resources. Hydrogeology J 13:148–160CrossRefGoogle Scholar
  2. Cano F (1991) MAGNA escala 1:50000. Hoja de Ardales (1038). IGME. Plano y memoria explicativaGoogle Scholar
  3. Casagrande G, Cucchi F, Zini L (2005) Hazard connected to railway tunnel construction in karstic area: applied geomorphological and hydrogeological surveys. Nat Hazards Earth Syst Sci 5:243–250CrossRefGoogle Scholar
  4. Drogue C (1980) Essai d’identification d’un type de structure de magasins carbonatos fisurés. Application à l’interprétation de certains aspects du fonctionnement hydrogéologique. Mem Soc Géol France II:101–108Google Scholar
  5. Garay P (2002) Tipología de acuíferos kársticos basada en el análisis de correlación y espectral de sus descargas naturales: una propuesta de revisión y ampliación de la clasificación de Mangin. In: Carrasco F, Durán JJ, Andreo B (eds) Karst and Environment, Malaga, Spain, pp 99–104Google Scholar
  6. Instituto Tecnológico Geominero de España, ITGE (1998) Atlas Hidrogeológico de Andalucía. Junta de Andalucía-IGME, Spain Google Scholar
  7. Jiménez P, Carrasco F, Andreo B, Durán JJ, López-Geta JA (2002) Caracterización de acuíferos carbonáticos del sur de España a partir de su respuesta hidrodinámica. In: Carrasco F, Durán JJ, Andreo B (eds.) Karst and Environment. Malaga, Spain, pp 105–113Google Scholar
  8. Kessler H (1965) Water balance investigations in the Karstic regions of Hungary. Vol 1. Act Coll Dubrovnik, AIHS-UNESCO, pp 91–105 Google Scholar
  9. Kiraly L (2003) Karstification and groundwater flow. Speleogenesis and evolution of Karst Aquifers 1:26–36Google Scholar
  10. Kolimbas D (2005) Tunnelling and tunnel mechanics. Springer, BerlinGoogle Scholar
  11. Mangin A (1984) Pour une meilleure conaissance des systèmes hydrologiques à partir des analyses corrélatoire et spectrale. J Hydrol 67:25–43CrossRefGoogle Scholar
  12. Milanovic PT (2004) Water resources engineering in karst. CRC Press, Boca RatonCrossRefGoogle Scholar
  13. Padilla A, Pulido-Bosch A (1995) Study of hydrographs of karstic aquifers by means of correlation and cross-spectral analysis. J Hydrol 168:73–89CrossRefGoogle Scholar
  14. Parise M, Gunn J (2007) Natural and anthropogenic hazards in karst areas: an introduction. Geol Soc Spec Publ 279:1–3CrossRefGoogle Scholar
  15. Pulido-Bosch A, Castillo E (1984) Quelques considérations sur la structure des aquifères carbonatés du Levant espagnol, d’après les données de captages d’eau. Karstologia 4:38–44Google Scholar
  16. Rademacher LK, Clark JF, Boles JR (2003) Groundwater residence times and flow paths in fractured rock determined using environmental tracers in the Mission Tunnel; Santa Barbara County, California, USA. Env Geol 43:557–567Google Scholar
  17. Worthington SRH, Ford DC, Davies GJ (2000) Matrix, fracture and channel components of storage and flow in a Paleozoic limestone aquifer. In: Sasowsky IK, Wicks CM (eds) Groundwater flow and contaminant transport in carbonate aquifers. Balkema, Rotterdam, pp 113–128Google Scholar
  18. Zangerl C, Eberhardt E, Loew S (2003) Ground settlements above tunnels in fractured crystalline rock: numerical analysis of coupled hydromechanical mechanisms. Hydrogeology J 11:162–173CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • J. Gisbert
    • 1
  • A. Vallejos
    • 1
  • A. González
    • 2
  • A. Pulido-Bosch
    • 1
  1. 1.Department of HydrogeologyUniversity of AlmeríaAlmeríaSpain
  2. 2.ADIFMadridSpain

Personalised recommendations