Environmental Geology

, Volume 58, Issue 2, pp 285–297 | Cite as

Karst morphology and groundwater vulnerability of high alpine karst plateaus

  • Lukas Plan
  • Kurt Decker
  • Robert Faber
  • Michael Wagreich
  • Bernhard Grasemann
Special Issue


High alpine karst plateaus are recharge areas for major drinking water resources in the Alps and many other regions. Well-established methods for the vulnerability mapping of groundwater to contamination have not been applied to such areas yet. The paper characterises this karst type and shows that two common vulnerability assessment methods (COP and PI) classify most of the areas with high vulnerability classes. In the test site on the Hochschwab plateau (Northern Calcareous Alps, Austria), overlying layers are mostly absent, not protective or even enhance point recharge, where they have aquiclude character. The COP method classifies 82% of the area as highly or extremely vulnerable. The resulting maps are reasonable, but do not differentiate vulnerabilities to the extent that the results can be used for protective measures. An extension for the upper end of the vulnerability scale is presented that allows identifying ultra vulnerable areas. The proposed enhancement of the conventional approach points out that infiltration conditions are of key importance for vulnerability. The method accounts for karst genetical and hydrologic processes using qualitative and quantitative properties of karst depressions and sinking streams including parameters calculated from digital elevations models. The method is tested on the Hochschwab plateau where 1.7% of the area is delineated as ultra vulnerable. This differentiation could not be reached by the COP and PI methods. The resulting vulnerability map highlights spots of maximum vulnerability and the combination with a hazard map enables protective measures for a manageable area and number of sites.


Groundwater vulnerability Alpine karst Karst morphology Karst plateau 



The karstmorphological investigations including field mapping were supported by the Vienna Waterworks (Municipal Department 31) within the KATER I and II project as part of the INTEREG IIIB EU-Programme. We especially thank Gerhard Kuschnig, as project manager, for the financial support. Nico Goldscheider and Jo De Waele are thanked for improving the earlier version of the manuscript through their helpful comments. Bartolomé Andreo and an anonymous reviewer made helpful contributions.


  1. Andreo B, Goldscheider N, Vadillo I, Vías JM, Neukum C, Sinreich M, Jiménez P, Brechenmacher J, Carrasco F, Hötzl H, Perles MJ, Zwahlen F (2006) Karst groundwater protection: first application of a Pan-European Approach to vulnerability, hazard and risk mapping in the Sierra de Líbar (Southern Spain). Sci Total Environ 357(1–3):54–73CrossRefGoogle Scholar
  2. Audra Ph, Bini A, Gabrovšek F, Häuselmann P, Hobléa F, Jeannin PY, Kunaver J, Monbaron M, Šusteršič F, Tognini P, Trimmel H, Wildberger A (2006) Cave genesis in the Alps between the Miocene and today: a review. Z Geomorphol 50(2):153–176Google Scholar
  3. Bouyère S (2004) A quantitative point of view of the concept of vulnerability. In: Zwahlen (ed) Vulnerability and risk mapping for the protection of carbonate (karst) aquifers. Final report, European Commission, Brussels, pp 10–15Google Scholar
  4. Cichocki G, Zojer H, Zojer H (2004) Nassfeld, Southern Alps, Austria. In: Zwahlen (ed) Vulnerability and risk mapping for the protection of carbonate (karst) aquifers. Final report, European Commission, Brussels, pp 230–241Google Scholar
  5. Civita M, De Maio M (2000) Valutazione e cartografia automatica della vulnerabilità degli acquiferi all’inquinamento con il sistema parametrico SINTACS R5. Pitagora, Bologna, p 226Google Scholar
  6. Cucchi F, Forti P, Zini L (2004) The vulnerability of complex karst hydrostructures: problems and perspectives. Geofis Int 43(4):533–540Google Scholar
  7. Daly D, Dassargues A, Drew D, Dunne S, Goldscheider N, Neale S, Popescu C, Zwahlen F (2002) Main concepts of the “European Approach” for (karst) groundwater vulnerability assessment and mapping. Hydrogeol J 10(2):340–345CrossRefGoogle Scholar
  8. Decker K, Plan L, Reiter F (2006) Tectonic assessment of deep groundwater pathways in fractured and karstified aquifers, Hochschwab Massif, Austria. Int. conference: all about Karst & Water, Vienna pp 138–142Google Scholar
  9. Doerfliger N, Jeannin PY, Zwahlen F (1999) Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environ Geol 39(2):165–176CrossRefGoogle Scholar
  10. Dunn S (2004) A Localised European Approach (LEA). In: Zwahlen (ed) Vulnerability and risk mapping for the protection of carbonate (karst) aquifers. Final report, European Commission, Brussels, pp 161–163Google Scholar
  11. European Commission (1995) Hydrogeological aspects of groundwater protection in karstic areas, EUR 16547 EN. Final report COST Action 65, BrusselsGoogle Scholar
  12. Faber R (2007) WinGeol-TerraMath., checked: June 2007
  13. Ford D, Williams P (2007) Karst hydrogeology and geomorphology. Wiley, ChichesterCrossRefGoogle Scholar
  14. Frisch W, Kuhlemann J, Dunkl I, Székely B, Vennemann T, Rettenbacher A (2002) Dachstein-Altfläche, Augenstein-Formation und Höhlenentwicklung–die Geschichte der letzten 35 Millionen Jahre in den zentralen Nördlichen Kalkalpen. Die Höhle 53(1):1–36Google Scholar
  15. Goldscheider N (2002) Hydrogeology and vulnerability of karst systems—Examples from the Northern Alps and Swabian Alb. Unpublished Ph.D. thesis, University of KarlsruheGoogle Scholar
  16. Goldscheider N (2005) Karst groundwater vulnerability mapping–application of a new method in the Swabian Alb, Germany. Hydrogeol J 13:555–564CrossRefGoogle Scholar
  17. Goldscheider N, Hötzl H (1999) Hydrological characteristics of folded alpine karst systems exemplified by the Gottesacker plateau (German–Austrian Alps). Acta Carsologica 28(1):87–103Google Scholar
  18. Goldscheider N, Popescu IC (2004) The European Approach. In: Zwahlen (ed) Vulnerability and risk mapping for the protection of carbonate (karst) aquifers. Final report, European Commission, Brussels, pp 17–21Google Scholar
  19. Goldscheider N, Klute M, Sturm S, Hötzl H (2000) The PI method—a GIS-based approach to mapping groundwater vulnerability with special consideration of karst aquifers. Z Angew Geol 46(3):157–166Google Scholar
  20. Hötzl H (1992) Karstgrundwasser. In: Käss W (ed) Geohydrologische Markierungstechnik, Lehrb. d. Hydrogeol. 9. Gebrüder Bornträger, Berlin, pp 374–406Google Scholar
  21. Jeannin P-Y, Cornaton F, Zwahlen F (2001) VULK: a tool for intrinsic vulnerability assessment and validation. In: Proceedings of the 7th conference on limestone hydrology and fissured media, Besançon, September 2001, pp 185–190Google Scholar
  22. Kralik M (2001) Strategie zum Schutz der Karstwassergebiete in Österreich. BE–189, Umweltbundesamt GmbH, WienGoogle Scholar
  23. Kralik M, Kaimel T (2003) Time-input, an innovative groundwater-vulnerability assessment scheme: application to an alpine test site. Environ Geol 44:679–686CrossRefGoogle Scholar
  24. Kuschnig G (2007) KATER II Web Portal., checked: June 2007
  25. Laimer HJ (2006) Karst groundwater vulnerability assessment in a pre-alpine fluviokarst system (Int. Karst Atlas No. 18). Z Geomorphol Suppl 147:9–27Google Scholar
  26. Mandl G (2000) The alpine sector of the Tethyan shelf–examples of Triassic to Jurassic sedimentation and deformation from the Northern Calcareous Alps. Mitt Österr Geol Ges 92:66–77Google Scholar
  27. Mandl G, Bryda G, Kreuss O, Moser M, Pavlik W (2002) Erstellung moderner geologischer Karten als Grundlage für karsthydrogeologische Spezialuntersuchungen im Hochschwabgebiet. Unpublished final report, Geol. survey of Austria, WienGoogle Scholar
  28. Margat J (1968) Vulnérabilité des nappes d’eau souterraine à la pollution. BRGM Publication 68, SGL 198 HYD, OrléansGoogle Scholar
  29. Nguyet VTM, Goldscheider N (2006) A simplified methodology for mapping groundwater vulnerability and contamination risk, and its first application in a tropical karst area, Vietnam. Hydrogeol J 14(8):1666–1675CrossRefGoogle Scholar
  30. O’Callaghan JF, Mark DM (1984) The extraction of drainage networks from digital elevation data. Comput Vision Graph 28(3):323–344CrossRefGoogle Scholar
  31. Perrin J, Pochon A, Jeannin PY, Zwahlen F (2004) Vulnerability assessment in karstic areas: validation by field experiments. Environ Geol 46:237–245CrossRefGoogle Scholar
  32. Plan L (2004) Speläologische Characterisierung und Analyse des Hochschwab-Plateaus, Steiermark. Die Höhle 55(1–4):19–33Google Scholar
  33. Plan L, Decker K (2006) Quantitative karst morphology of the Hochschwab plateau, Eastern Alps, Austria (Int. Karst Atlas No. 19). Z Geomorphol Suppl 147:29–56Google Scholar
  34. Ravbar N (2007) The protection of karst water. Carsologica 6. Karst Research Institute at ZRC SAZU. Postojna, LjubljanaGoogle Scholar
  35. Rumpold A (2007) Wiener Wasser—Statistik., checked June 2007
  36. Sauro U (2005) Closed depressions. In: Culver D, White WB (eds) Encyclopedia of caves. Elsevier, Amsterdam, pp 108–122Google Scholar
  37. Stadler H, Strobl E, Benischke R (2001) Karstwasserdynamik und Karstwasserschutz Hochschwab—Arbeitsbericht 4. Projektjahr. Unpublished report, Joanneum Research, GrazGoogle Scholar
  38. Trimmel H, Waltham T (2004) Europe, Alpine. In: Gunn J (ed) Encyclopedia of caves and karst science. Routledge, New York, pp 325–327Google Scholar
  39. Vías JM, Andreo B, Perles MJ, Carrasco F, Vadillo I, Jiménez P (2006) Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: the COP method. Hydrogeol J 14(6):912–925CrossRefGoogle Scholar
  40. Vrba J, Zaporozec A (eds) (1994) Guidebook on Mapping Groundwater Vulnerability. International Contributions to Hydrogeol. (IAH), 16, HannoverGoogle Scholar
  41. Williams PW (1983) The role of the subcutaneous zone in karst hydrology. J Hydrol 61(1–3):45–67CrossRefGoogle Scholar
  42. Zwahlen F (2004) Vulnerability and risk mapping for the protection of carbonate (karst) aquifers, EUR 20912. Final report COST Action 620, European Commission, Directorate-General XII Science, Research and Development BrusselsGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Lukas Plan
    • 1
  • Kurt Decker
    • 1
  • Robert Faber
    • 2
  • Michael Wagreich
    • 1
  • Bernhard Grasemann
    • 1
  1. 1.Department of Geodynamics and SedimentologyUniversity of ViennaViennaAustria
  2. 2.TerraMathViennaAustria

Personalised recommendations