Advertisement

Environmental Geology

, Volume 56, Issue 8, pp 1551–1561 | Cite as

Atmospheric inorganic aerosol of a non-industrial city in the centre of an industrial region of the North of Spain, and its possible influence on the climate on a regional scale

  • Irene Rodríguez
  • Salvador Galí
  • Celia Marcos
Original Article

Abstract

Mineral particles could have influenced on the climate of Oviedo, a non-industrial city situated in the centre of an industrial zone of the North of Spain, increasing the temperature and the precipitations, in spite of the fact that “greenhouse gases” concentrations have diminished in this city in recent years. The directive (1999/30/EC) of the European Commission began to be applied in Oviedo in the year 2003. In agreement with this norm, our first aim was the identification of the inorganic particulate matter of the PM10 and PM2.5 fractions sampled in this city. X-ray diffraction and scanning electron microscopy coupled with X-ray dispersive energy spectrometry were used. The percentages of the different mineral phases of the PM were obtained by a Rietveld refinement of powder X-ray diffraction data. The compositions of the PM10 and PM2.5 fractions of this city are similar. Sulphates are the most abundant particles in the both fractions. Most sulphates, nitrates and sal-ammoniac would have formed by reaction between solid, liquid and/or gas particles and they could be associated with the power stations near to the city and traffic. Wüstite and haematites come from the iron and steel industries of Gijón and Avilés. The main natural sources of halite and carbonates and silicates are sea spray and soil resuspension by the wind, respectively.

Keywords

Inorganic particulate matter Rietveld refinement Scanning electron microscopy Oviedo X-ray powder diffraction 

Notes

Acknowledgments

We thank to Spanish Ministry of the Environment for the use of the unit mobile equipped with a high volume sampler and to Technical Department of the National Institute of Silicosis, Central Hospital of Oviedo, for the use of the Philips PW 3040/60 “X’pert” equipment.

References

  1. Anderson JR, Buseck PR, Patterson TL, Arimoto R (1996) Characterization of the Bermuda tropospheric aerosol by combined individual-particle and bulk-aerosol analysis. Atmos Environ 30:319–338CrossRefGoogle Scholar
  2. Andreae MO (1995) Climatic effects of changing atmospheric aerosol levels. In: Henderson-Sellers A (ed) Future climates of the World: a modelling perspective. World survey of climatology, vol 16. Elsevier, Amsterdam, pp 341–392Google Scholar
  3. Andreae MO (1996) Raising dust in the greenhouse. Nature 380:389–390CrossRefGoogle Scholar
  4. Aramburu C, Bastida F (eds) (1995) Geología de Asturias. Ediciones Trea, Principado de AsturiasGoogle Scholar
  5. Breed CA, Arocena JM, Sutherland D (2002) Possible sources of PM10 in Prince George (Canada) as revelated by morphology and in situ chemical composition of particulate. Atmos Environ 36:1721–1731CrossRefGoogle Scholar
  6. Buseck PR, Pósfai M (1999) Airborne minerals and related aerosol particles: effects on climate and the environment. Proc Nat Acad Sci USA 96:3372–3379CrossRefGoogle Scholar
  7. Buseck PR, Jacob DJ, Pósfai M, Li J, Anderson JR (2000) Minerals in the air: an environmental perspective. Int Geol Rev 7:577–594CrossRefGoogle Scholar
  8. Connor M (1990) Les aerosoles antropogenes et l’alteration de la pierre. Proyect de Diplome Ecole Politechnyque de LaussaneGoogle Scholar
  9. Davis BL (1980) A study of the errors in X-ray quantitative analysis procedures for aerosols collected on filter media. Atmos Environ 15:291–296CrossRefGoogle Scholar
  10. Dentener FJ, Carmichael GR, Zhang Y, Lelieveld J, Crutzen PJ (1996) Role of mineral aerosol as a reactive surface in the global troposphere. J Geophys Res 101:22869–22889CrossRefGoogle Scholar
  11. Dockery DW, Pope A (1996) Epidemiology of acute health effects: summary of time-series studies. In: Wilson R, Spengler JD (eds) Particles in our air: concentration and health effects. Harvard University Press, Cambridge, pp 123–147Google Scholar
  12. Donaldson K, MacNee W (1999) The mechanism of lung injury caused by PM10. Air pollution and health. In: Hester RE, Harrison RM (eds) Issue in environmental science and technology. Royal Society of Chemistry, Reedwood Books Ltd., TrowbridgeGoogle Scholar
  13. Duce RA (1995) Sources distributions and fluxes of mineral aerosols and their relationship to climate. In: Charlson RJ, Heintzenberg J (eds) Aerosol forcing of climate. Wiley, New YorkGoogle Scholar
  14. Fenger J (1999) Urban air quality. Atmos Environ 33:4877–4900CrossRefGoogle Scholar
  15. González Frades L (1891) Resúmenes generales de las observaciones realizadas desde el año 1851 hasta 1890, inclusive, en la estación meteorológica de Oviedo. Establecimiento Tipográfico de Vicente Brid, OviedoGoogle Scholar
  16. Guthrie GD Jr, Mossman BT (1993) Merging the geological and biological sciences: an integrated approach to the study of mineral-induced pulmonary diseases. In: Guthrie GD Jr, Mossman BT (eds) Health effects of mineral dusts [Ribbe PH (ed.) Reviews in mineralogy, vol 28, Mineralogical Society of America]Google Scholar
  17. Jones TP, Williamson BJ, Bérubé KA, Richards RJ (2000) Mycroscopy and chemistry of used TEOM filters Swansea 1998–1999. April (Paper presented at the fourth Annual Meeting of the Joint Research Programme on Outdoor and Indoor Air Pollution University of Leicester 12–13th, UK)Google Scholar
  18. Jung CH, Kim YP (2006) Numerical estimation of the effects of condensation and coagulation on visibility using the moment method. J Aerosol Sci 37(2):143–161CrossRefGoogle Scholar
  19. Kunzli N, Kaiser R, Medina S, Studnicka M, Chanel O, Filliger P, Herry M, Horak F, Puybonnieux-Texier V, Quenel P, Schneider J, Seethaler R, Vergnaud JC, Sommer H (2000) Public-health impact of outdoor and traffic-related air pollution: a European assessment. Lancet 356(9232):795–801CrossRefGoogle Scholar
  20. Larsen S (2002) Air Quality in Europe State and trends 1990–99. European Environment AgencyGoogle Scholar
  21. Li X, Maring H, Savoir D, Voss K, Prospero JM (1996) Dominance of mineral dust in aerosol light-scattering in the North Atlantic trade winds. Nature 380:416–419CrossRefGoogle Scholar
  22. Mahowald N, Kohfeld K, Hansson M, Balkansky Y, Harrison SP, Prentice IC, Schulz M, Rodhe H (1999) Dust sources and deposition during the last glacial maximum and current climate: a comparison of model results with paleodata from ice cores and marine sediments. J Geophys Res 104:15895–15916CrossRefGoogle Scholar
  23. Mateo González P (1983) Series termométricas de la antigüa estación meteorológica de la Universidad de Oviedo. Instituto Nacional de Meteorología, Ministerio de Transportes, Turismo y Comunicaciones, Publicación A-73, MadridGoogle Scholar
  24. Mattsson JO, Nihlev T (1996) The transport of Saharan dust to Southern Europe: a scenario. J Arid Environ 32:111–119CrossRefGoogle Scholar
  25. Mészáros E (1999) Fundamentals of atmospheric aerosol chemistry. Akadémiai KiadoGoogle Scholar
  26. Pope CA, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD (2002) Lung cancer, cardio-pulmonary mortality, and long-term exposure to fine particulate air pollution. J Am Med Assoc 287(9):1132–1141CrossRefGoogle Scholar
  27. Querol X, Alastuey A, López-Soler A, Mantilla E, Plana F (1996) Mineral composition of atmospheric particulates around a large coal-fired power station. Atmos Environ 30:3557–3572CrossRefGoogle Scholar
  28. Rivera-Carpio CA, Corrigan CE, Novakov T, Penner JE, Rogers CF, Chow JC (1996) Derivation of contributions of sulphate and carbonaceous aerosols to cloud condensation nuclei from mass size distributions. J Geophys Res Atmos 101:19483–19493CrossRefGoogle Scholar
  29. Rodríguez I (2005) Mineralogía y evaluación ambiental de las partículas atmosféricas de Oviedo y Gijón. Doctoral thesis, University of Oviedo, SpainGoogle Scholar
  30. Roldán Fernández A (1988) Notas para una Climatología de Oviedo. Instituto Nacional de Meteorología, Ministerio de Transportes, Turismo y Comunicaciones. Publicaciones K-48, Madríd, p 45Google Scholar
  31. Ryall DB, Derwent RG, Manning AJ, Redington AL, Corden J, Millington W, Simmonds PG, O’Doherty SO, Carslaw N, Fuller GW (2002) The origin of high particulate concentrations over United Kingdom March 2000. Atmos Environ 36:1363–1378CrossRefGoogle Scholar
  32. Schwartz J, Dochery DW, Neas LM (1996) Is daily mortality associated specifically with fine particles? J Air Waste Manag Assoc 46:927–939CrossRefGoogle Scholar
  33. Sokolik IN, Toon OB (1996) Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature 381:681–683CrossRefGoogle Scholar
  34. Tegen I, Lacis AA (1996) Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol. J Geophys Res 101:19237–19244CrossRefGoogle Scholar
  35. Umbría A, Galá M, Muñoz MJ, Martín M (2004) Characterization of atmospheric particles: analysis of particles in the Campo de Gibraltar. Atmosfera, pp 191–206Google Scholar
  36. Wiederkehr P, Yoon SJ (1998) Air quality indicators. In: Fenger J, Hertel O, Palmgren F (eds) Urban air pollution European aspects. Kluwer, DordrechtGoogle Scholar
  37. Zhang Y, Carmichael GR (1999) The role of mineral aerosol in troposheric chemistry in East Asia-A model study. J Appl Meteorol 38:353–366CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Irene Rodríguez
    • 1
  • Salvador Galí
    • 2
  • Celia Marcos
    • 1
  1. 1.Dpto. Geología and Inst. de Química Organometálica “Enrique Moles”Universidad de OviedoOviedoSpain
  2. 2.Dpto. Cristal·lografia, Mineralogia i Dipòsits MineralsUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations