Environmental Geology

, Volume 56, Issue 7, pp 1269–1279 | Cite as

From radon hazard to risk prediction-based on geological maps, soil gas and indoor measurements in Germany

  • J. Kemski
  • R. Klingel
  • A. SiehlEmail author
  • M. Valdivia-Manchego
Original Article


Mapped geological units can be regarded as proxies standing for a complex series of subsoil geochemical and physical properties including the assigned radon activity concentration in soil gas, which is taken as best estimator of the regional geogenic radon potential. Areal distribution of measuring sites for soil gas in Germany is adapted to spatial variation of geology. A grid-based and distance-weighted interpolation procedure is applied, following geologically defined neighbourhood relations of measuring sites and accounting for isolated outcrops of known geology but without measurements. To investigate the statistical relationship between indoor radon, house type and building ground specifications, measurements of the indoor radon concentration have been carried out in more than 10,000 dwellings in different regions of Germany. Multiple regression analyses of variance reveal that besides region-specific geological properties and building characteristics, various house type and living style variables significantly contribute to the explained variance for ground floor radon concentrations. These parameters are also dominant in controlling the radon transfer relation from soil gas to indoor air. Risk prediction maps for radon in houses indicating the probability to exceed certain indoor threshold values can be useful especially for regions with no or only a few measurements of indoor radon.


Radon mapping Geogenic radon potential Radon risk prediction Soil gas 



The German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety and the Federal Office for Radiation Protection (BfS) funded an essential part of the research program. The authors thank all persons involved for constructive discussions and administrative help. The anonymous reviewers’ valuable comments are also gratefully appreciated.


  1. Akerblom G (1995) Methodology for assessment of exposure to environmental factors in application to epidemiologic studies—assessment of exposure to natural ionizing radiation. Sci Total Environ 168:155–168CrossRefGoogle Scholar
  2. Apte MG, Price PN, Nero AV, Revzan KL (1999) Predicting New Hampshire indoor radon concentrations from geologic information and other covariates. Environ Geol 37:181–194CrossRefGoogle Scholar
  3. Badr I, Oliver MA, Durrani SA (1996) Statistical evidence of the geological control over radon soil gas concentrations and its implications for mapping radon potential. Radiat Prot Dosimetry 63(4):281–291CrossRefGoogle Scholar
  4. Buttafuoco G, Tallarico A, Falcone G (2007) Mapping Soil Gas Radon Concentration: a Comparative Study of Geostatistical Methods. Environ Monit Assess 131:135–151CrossRefGoogle Scholar
  5. Council Directive 96/29/EURATOM (1996) Basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionizing radiation. BrusselsGoogle Scholar
  6. DIN 25706-1 (1994) Passive measurements of radon—Part 1: Track etch method. Deutsches Institut für Normung e.V., BerlinGoogle Scholar
  7. EPA 402-R-92-004 (1992) Indoor Radon and Radon Decay Product Measurement Device Protocols of the U.S. Environmental Protection Agency, Washington, DCGoogle Scholar
  8. Gunby JA, Darby SC, Miles JCH, Green BMR, Cox DR (1993) Factors affecting indoor radon concentrations in the United Kingdom. Health Phys 64:1:2–12CrossRefGoogle Scholar
  9. ICRP (1993) Protection against radon-222 at home and at work, ICRP Publications 65, Pergamon Press, OxfordGoogle Scholar
  10. Jönsson G (2001) Soil radon depth dependence. Radiat Meas 34:415–418CrossRefGoogle Scholar
  11. Kemski J, Klingel R, Siehl A (1996) Classification and mapping of radon affected areas in Germany. Environ Int 22(Suppl 1):S789–S798CrossRefGoogle Scholar
  12. Kemski J, Siehl A, Stegemann R, Valdivia-Manchego M (2001) Mapping the geogenic radon potential in Germany. Sci Total Environ 272:217–230CrossRefGoogle Scholar
  13. Kemski J, Klingel R, Siehl A, Stegemann R, Valdivia-Manchego M (2002) Transferfunktion für die Radonkonzentration in der Bodenluft und der Wohnraumluft (Abschlussbericht zu den Forschungsvorhaben St. Sch. 4186 und St. Sch. 4187: Ermittlung einer Transferfunktion für die Radonkonzentration in der Bodenluft und der Wohnraumluft incl. Radonmessungen in Häusern zur Validierung des geologisch induzierten Radonpotenzials (Appraisal of transfer function of radon concentration in soil gas and indoor including radon measurements in houses for validation of geologically induced radon potential). Schriftenreihe Reaktorsicherheit und Strahlenschutz, BMU-2002–598Google Scholar
  14. Kemski J, Klingel R, Stegemann R (2004) Validierung der regionalen Verteilungen der Radonkonzentration in Häusern mittels Radonmessungen unter Berücksichtigung der Bauweise (Abschlussbericht zum Forschungsvorhaben St. Sch. 4271) (Validation of the regional distribution of radon concentrations in houses taking into account construction). Schriftenreihe Reaktorsicherheit und Strahlenschutz, BMU-2004-641Google Scholar
  15. Kemski J, Klingel R, Siehl A, Stegemann R (2005) Radon transfer from ground to houses and prediction of indoor radon in Germany based on geological information. In: McLaughlin JP, Simopoulos SE, Steinhäusler F (eds) Radioactivity in the environment, 7. The Natural Radiation Environment VII. Elsevier, Amsterdam, pp 820–832Google Scholar
  16. Killip IR (2005) Radon hazard and risk in Sussex, England and the factors affecting radon levels in dwellings in chalk terrain. - Radiation Protection Dosimetry 113(1):99–107Google Scholar
  17. Menzler S, Schaffrath-Rosario A, Wichmann HE, Kreienbrock L (2006) Abschätzung des attributablen Lungenkrebsrisikos in Deutschland durch Radon in Wohnungen—(Estimation of the attributable lung cancer risk in Germany due to radon in homes). In: Wichmann HE, Schlipköter HW, Fülgraff G (eds) Fortschritte in der Umweltmedizin., ecomed Medizin, Landsberg, 101 pGoogle Scholar
  18. Mikšová J, Barnet I (2001) Radon risk maps on a scale 1: 50000 – 21 map sheets. CGS, PragueGoogle Scholar
  19. Miles JCH, Appleton JD (2005) Mapping variation in radon potential both between and within geological units. J Radiol Prot 25:257–276CrossRefGoogle Scholar
  20. Popit A, Vaupotic J (2002) Indoor radon concentrations in relation to geology in Slovenia. Environ Geol 42:330–337CrossRefGoogle Scholar
  21. Reimer GM, Gundersen LCS (1989) A direct correlation among indoor Rn, soil gas Rn and geology in the Reading Prong near Boyertown, Pennsylvania. Health Phys 57:1:155–160Google Scholar
  22. Shi X, Hoftiezer DJ, Duell EJ, Onega TL (2006) Spatial association between residential radon concentration and bedrock types in New Hampshire. Environ Geol 51:65–71CrossRefGoogle Scholar
  23. Sundal AV, Henriksen H, Soldal O, Strand T (2004) The influence of geological factors on indoor radon concentrations in Norway. Sci Total Environ 328:41–53CrossRefGoogle Scholar
  24. Tanner AB (1980) Radon migration in ground: a supplementary review. In: Gesell TF, Lowder WM (eds) The natural radiation environment III, University of Chicago press, Chicago, pp 5–56Google Scholar
  25. Thomas J, Hulka J, Tomasek L, Foitikova I, Barnet I (2002) Determination of radon prone areas by probabilistic analysis of indoor survey results and geological prognosis maps in the Czech Republic. Int Congr Ser 1225:49–54CrossRefGoogle Scholar
  26. Zhu HC, Charlet JM, Tondeur F (1998) Geological controls to the indoor radon distribution in southern Belgium. Sci Total Environ 220:195–201CrossRefGoogle Scholar
  27. Zhu HC, Charlet JM, Poffijn A (2001) Radon risk mapping in southern Belgium: an application of geostatistical and GIS techniques. Sci Total Environ 272:203–210CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • J. Kemski
    • 1
  • R. Klingel
    • 1
  • A. Siehl
    • 2
    Email author
  • M. Valdivia-Manchego
    • 2
  1. 1.Kemski & PartnerBonnGermany
  2. 2.Institute of GeologyUniversity of BonnBonnGermany

Personalised recommendations