Environmental Geology

, Volume 56, Issue 6, pp 1071–1091 | Cite as

The combined use of radio-frequency electromagnetics and radiomagnetotellurics methods in non-ideal field conditions for delineating hydrogeological boundaries and for environmental problems

  • A. Carvalho Dill
  • P. Turberg
  • I. Müller
  • A. Parriaux
Original Article

Abstract

Radio frequency geophysical methods are known for being very versatile tools in ground- and groundwater investigation at shallow depths. They are fast and easy to use and allow a high density of information over large surfaces, which makes them very suitable for geological mapping sensu lato (faults, lithological contacts, groundwater-bearing structures, vulnerability maps, and contaminant plumes) and for selecting borehole locations. Significant improvement concerning 2D and 3D modelling of the data has occurred in recent decades. However, field surveys are very seldom performed in “ideal conditions”—the lack of necessary transmitters, in the convenient direction, in order to catch the structures in E- and H-pol for modelling purposes, is not an unusual situation. The present paper shows how the use of RMT and RF-EM is nevertheless of great help and suggests different ways to explore qualitative data in different geological settings.

Keywords

Geophysics Radio-magnetotellurics Radio frequency electromagnetics Groundwater-bearing structures Groundwater quality 

Supplementary material

254_2008_1208_MOESM1_ESM.doc (42 kb)
ESM1 (DOC 43 kb)
254_2008_1208_MOESM2_ESM.doc (42 kb)
ESM2 (DOC 43 kb)
254_2008_1208_MOESM3_ESM.doc (42 kb)
ESM3 (DOC 42 kb)

References

  1. Almeida C, Mendonça JJL, Jesus MR, Gomes AJ (2000) – Sistemas Aquíferos de Portugal Continental. Volume 1.27 pp. Publ. do Centro de Geologia e do INAG. http://snirh.pt/snirh/download/aquiferos_PortugalCont/Ficha_T3.pdf
  2. Bosch FP (2002) Shallow depth karst structure imaging with the Very Low Frequency-Electromagnetics GRADIENT method (VLF-EM GRAD): A new geophysical contribution to aquifer protection strategies compared with other near surface mapping geophysics. PhD, University of Neuchâtel, SwitzerlandGoogle Scholar
  3. Cabral J (1995) Neotectónica em Portugal Continental. Memórias do Instituto Geológico e Mineiro 31:265Google Scholar
  4. Carvalho Dill A (1993) Spatial variability in porous aquifer properties. Synthetical approach by geophysics, tracer techniques and groundwater flow parameters. PhD, University of Neuchatel, SwitzerlandGoogle Scholar
  5. Carvalho Dill A, Reis MP, Nunes L (2001) Hidrogeologia do aquífero superior in Estudo de Impacte Ambiental da Marina e Novo cais dos “ferries” do Tróia Resort – Vol. II (Anexo 1)Google Scholar
  6. Falcão JM, Carvalho, FP, Leite MM, Alarcão M, Cordeiro E, Ribeiro J (2005) MinUrar- Minas de Urânio e seus Resíduos: Efeitos na Saúde da População. (Uranium mines and their residues (MinUrar): Exposure to enhanced levels of radioactivity and toxic metals in a Portuguese population). Relatório Científico I, July 2005, Publ. INSA, INETI, ITNGoogle Scholar
  7. Fetter CW (1994) Applied Hydrogeology. 3rd Edn. Prentice Hall, IncGoogle Scholar
  8. Fischer G, Schnegg PA, Peguiron M, Le Quang BV (1981) An analytic one-dimensional magnetotelluric inversion scheme. Geophysical Journal of the Royal Astronomical Society 67:257–278CrossRefGoogle Scholar
  9. Fischer G, Le Quang BV, Müller I (1983) VLF ground survey, a powerful tool for the study of shallow two-dimensional magnetotelluric modelling. Geophysical Prospecting 31:977–991CrossRefGoogle Scholar
  10. Fischer G (1985) Some remarks on the behaviour of the magnetotelluric phase. Geophysical Prospecting 33:716–722CrossRefGoogle Scholar
  11. Imar 2006 Relatório do Programa de Monitorização Ambiental do Tróia resort (September 2005 – June 2006 Environmental Monitoring Report)Google Scholar
  12. Kaikkonen P, Sharma SP (1998) 2-D non linear joint inversion of VLF and VLF-R data using simulated annealing. Journal of Applied Geophysics 39:155–176CrossRefGoogle Scholar
  13. Müller I, Schotterer U (1986) Electromagnetic VLF-Resistivity Prospection in the region of Tripolis and the coastal area of Argos-Astros. Paper presented at the 5th international symposium on underground water tracing, Institute of geology and mining exploration, Athenas: 425–440Google Scholar
  14. Newman GA, Recher S, Tezkan B, Neubauer FM (2003) Case History 3D inversion of a scalar radio magnetotelluric field data set. Geophysics 68(3):791–802CrossRefGoogle Scholar
  15. Ogilvy RD, Cuadra A, Jackson PD, Monte JL (1991) Detection of an air-filled drainage gallery by the VLF resistivity method. Geophysical Prospecting 39:845–859CrossRefGoogle Scholar
  16. Parasnis DS (1997) Principles of Applied Geophysics. Chapman and Hall 5th EdnGoogle Scholar
  17. Pinto EM, Ferreira N, Leite MM (2005) Estudo da distribuição dos metais e de outros contaminantes químicos no ambiente—Parte B, (Uranium mines and their residues (MinUrar): Exposure to enhanced levels of radioactivity and toxic metals in a Portuguese population. Part B). Relatório Científico I, Jul. 2005, Publ. INSA, INETI, ITN: 61–75Google Scholar
  18. Pinto MJ, Carvalho P, Leitão P, Mendes M (2001) Flora e comunidades vegetais in in Estudo de Impacte Ambiental da Marina e Novo cais dos “ferries” do Tróia Resort – Vol. II – Anexo 8, Maio de 2001Google Scholar
  19. Reynolds JM (1997) An Introduction to Applied and Environmental Geophysics, 2nd Edn. John Wiley and Sons, reprinted March 2005, 796 ppGoogle Scholar
  20. Stiefelhagen W (1998) Radio Frequency Electromagnetics (RF-EM): Kontinuierlich messendes Breitband-VLF, erweitert auf hydrogeologische Problemstellungen. PhD, University of Neuchatel, SwitzerlandGoogle Scholar
  21. Teixeira C, Brito de Carvalho LH, Santos J P, Peres AM, Barros RF, Pilar L, Fernandes AP, Rocha AT (1967) Notícia explicativa da Folha 17- D Gouveia. Carta Geológica de Portugal à Escala 1: 50 000. Publ. dos Serviços Geológicos de PortugalGoogle Scholar
  22. Telford WM, Geldart LP, Sheriff RE, Keys DA (1990) Applied geophysics, 2nd edn, 860 S. Cambridge University Press, USAGoogle Scholar
  23. Tezkan B, Goldman M, Greinwald S, Hördt A, Müller I, Neubauer F.M, Zacher G (1996) A joint application of radiomagnetotellurics and transient electromagnetics to the investigation of a waste deposit in Cologne (Germany). J Appl Geophys 34:199–212CrossRefGoogle Scholar
  24. Tezkan B, Hördt A, Gobashy M (2000) Two-dimensional radiomagnetotelluric investigation of industrial and domestic waste sites in Germany. J Appl Geophys 44:237–256CrossRefGoogle Scholar
  25. Thierrin J, Müller I (1988) La méthode VLF-Résistivité multifréquence, un exemple d’exploration hydrogéologique dans un synclinal crétacé à la Brévine (Jura neuchâtelois). Paper presented at the Quatrième Coll. Hydrol. en Pays calcaire et en milieu fissuré, Besançon, 29 September–1 October 1988. Ann Sci Univ Besançon Mém HS 6:17–24Google Scholar
  26. Turberg P, Müller I (1992) La méthode inductive VLF-EM pour la prospection hydrogéologique en continu du milieu fissuré. Annales Scientifique de l’Université de Besançon, Mémoire hors série 11:207–214Google Scholar
  27. Turberg P 1994 Apport de la cartographie Radiomagnétotellurique à l’hydrogéologie des milieux fracturés. PhD, University of Neuchatel, SwitzerlandGoogle Scholar
  28. Tullen P, Turberg P, Parriaux A (2006) Radiomagnetotelluric mapping, groundwater numerical modelling and 18-oxygen isotopic data as combined tools to determine the hydrogeological system of a landslide prone area. Eng Geol 87(3):95–204Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • A. Carvalho Dill
    • 1
  • P. Turberg
    • 2
  • I. Müller
    • 3
  • A. Parriaux
    • 2
  1. 1.Universidade do Algarve, Faculdade das Ciências do Mar e AmbienteFaroPortugal
  2. 2.École Polytechnique Fédérale de LausanneENAC ICARE GEOLEP, GCLausanneSwitzerland
  3. 3.Centre Hydrogéologie de l’Université de NeuchâtelNeuchâtelSwitzerland

Personalised recommendations