Environmental Geology

, Volume 54, Issue 8, pp 1657–1665 | Cite as

Time-lapse crosswell seismic and VSP monitoring of injected CO2 in a brine aquifer

  • Thomas M. Daley
  • Larry R. Myer
  • J. E. Peterson
  • E. L. Majer
  • G. M. Hoversten
Original Article

Abstract

Seismic surveys successfully imaged a small scale CO2 injection (1,600 ton) conducted in a brine aquifer of the Frio Formation near Houston, Texas. These time-lapse borehole seismic surveys, crosswell and vertical seismic profile (VSP), were acquired to monitor the CO2 distribution using two boreholes (the new injection well and a pre-existing well used for monitoring) which are 30 m apart at a depth of 1,500 m. The crosswell survey provided a high-resolution image of the CO2 distribution between the wells via tomographic imaging of the P-wave velocity decrease (up to 500 m/s). The simultaneously acquired S-wave tomography showed little change in S-wave velocity, as expected for fluid substitution. A rock physics model was used to estimate CO2 saturations of 10–20% from the P-wave velocity change. The VSP survey resolved a large (∼70%) change in reflection amplitude for the Frio horizon. This CO2 induced reflection amplitude change allowed estimation of the CO2 extent beyond the monitor well and on three azimuths. The VSP result is compared with numerical modeling of CO2 saturations and is seismically modeled using the velocity change estimated in the crosswell survey.

Keywords

CO2 Sequestration VSP Crosswell Seismic 

References

  1. Adolph B, Stoller C, Brady J, Flaum C, Melcher C, Roscoe B, Vittachi A (1994) Saturation monitoring with the RST Reservoir Saturation Tool. Oilfield Rev 6:29–38Google Scholar
  2. Ajo-Franklin JB, Urban J, Harris JM (2006) Temporal integration of seismic traveltime tomography. Society of Exploration Geophysicists Annual Meeting, Expanded Abstracts 25:2468Google Scholar
  3. Arts R, Elsayed R, Van Der Meer L, Eiken O, Ostmo O, Chadwick A, Kirby G, Zinszner B (2002) Estimation of the mass of injected CO2 at Sleipner using time-lapse seismic data. Paper H-16, EAGE 64th Annual ConferenceGoogle Scholar
  4. Balch AH, Lee MW (eds) (1984) Vertical seismic profiling: technique, applications, and case histories. International Human Resources Development Corporation, Boston, MAGoogle Scholar
  5. Brie A, Pampuri F, Marsala AF, Meazza O (1995) Shear sonic interpretation in gas-bearing sands. SPE Annu Tech Conf 30595:701–710Google Scholar
  6. Carcione JM, Picotti S, Gei D, Rossi G (2006) Physics and seismic modeling for monitoring CO2 storage. Pure Appl Geophys 163:175–207. doi:10.1007/s00024-005-0002-1 CrossRefGoogle Scholar
  7. Daley TM, Cox D (2001) Orbital vibrator seismic source for simultaneous P- and S-wave crosswell acquisition. Geophysics 66:1471–1480CrossRefGoogle Scholar
  8. Doughty C, Freifeld BM, Trautz RC (2007) Site characterization for CO2 geologic storage and vice versa: the Frio brine pilot, Texas, USA as a case study. Environ Geol (in press)Google Scholar
  9. Gritto R, Daley TM, Myer LR (2004) Joint cross-well and single-well seismic studies at Lost Hills, California. Geophys Prospect 52:323–339CrossRefGoogle Scholar
  10. Hardage BA (2000) Vertical seismic profiling: principles, handbook of geophysical exploration: seismic exploration, vol 14. Elsevier, AmsterdamGoogle Scholar
  11. Harris JM, Nolen-Hoeksema RC, Langan RT, Van Schaack M, Lazaratos SK, Rector JW (1995) High-resolution crosswell imaging of a west Texas carbonate reservoir: Part 1—Project summary and interpretation. Geophysics 60:667–681CrossRefGoogle Scholar
  12. Hoversten GM, Gritto R, Washbourne J, Daley TM (2003) Pressure and fluid saturation prediction in a multicomponent reservoir, using combined seismic and electromagnetic imaging. Geophysics 68:1580–1591CrossRefGoogle Scholar
  13. Hovorka SD, Benson SM, Doughty C, Friefeld BM, Sakurai S, Daley TM (2006) Measuring permanence of CO2 storage in saline formations: the Frio experiment. Environ Geosci 13:1–17 doi:10.1306/eg.11210505011 CrossRefGoogle Scholar
  14. Lazaratos SK, Marion BP (1997) Crosswell seismic imaging of reservoir changes caused by CO2 injection. Lead Edge 16:1300–1306CrossRefGoogle Scholar
  15. Majer EL, Daley TM, Korneev V, Cox D, Peterson JE (2006) Cost-effective imaging of CO2 injection with borehole seismic methods. Lead Edge 25:1290CrossRefGoogle Scholar
  16. National Institute of Standards and Technology (2006) Thermophysical properties of carbon dioxide. http://webbook.nist.gov/cgi/fluid.cgi?ID=C124389&Action=Page. Cited Nov 17, 2006
  17. Pacala S, Socolow R (2004) Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305:968–972CrossRefGoogle Scholar
  18. Peterson JE, Paulsson BN, McEvilly TV (1985) Applications of algebraic reconstruction techniques to crosshole seismic data. Geophysics 50:1566–1580CrossRefGoogle Scholar
  19. Pruess K (2004) The TOUGH Codes—a family of simulation tools for multiphase flow and transport processes in permeable media. Vadose Zone J 3:738–746CrossRefGoogle Scholar
  20. Spetzler J (2006) Time-lapse seismic crosswell monitoring of steam injection in tar sand. Society of Exploration Geophysicists Annual Meeting, Expanded Abstracts 25:3120Google Scholar
  21. Spetzler J, Xue Z, Saito H, Nobuoka D, Hiroyuki A, Nishizawa O (2006) Time-lapse seismic crosswell monitoring of CO2 injected in an onshore sandstone aquifer. Society of Exploration Geophysicists Annual Meeting, Expanded Abstracts 25:3285Google Scholar
  22. Xue Z, Tanase D, Saito H, Nobuoka D, Watanabe J (2005) Time-lapse crosswell seismic tomography and well logging to monitor the injected CO2 in an onshore aquifer. Nagaoka, Japan, Society of Exploration Geophysicists Annual Meeting, Expanded Abstracts 24:1433Google Scholar
  23. Yilmaz O (1987) Seismic data processing. Investigations in Geophysics no. 2, Society of Explorations GeophysicistsGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Thomas M. Daley
    • 1
  • Larry R. Myer
    • 1
  • J. E. Peterson
    • 1
  • E. L. Majer
    • 1
  • G. M. Hoversten
    • 1
  1. 1.Lawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations