Advertisement

Environmental Geology

, Volume 54, Issue 7, pp 1473–1484 | Cite as

A synthetic approach integrating surface and subsurface data for prospecting deep aquifers: the Southeast Tunisia

  • Salem Bouri
  • Jalila Makni
  • Hamed Ben Dhia
Original Article

Abstract

The Southeast Tunisia has remarkable thermal springs that have been used for bathing since many years. Currently, studies are being carried out to investigate the possible use of the hot water for heating buildings and for greenhouses. Springs with discharge temperatures between 26.8 and 58°C exist in the area. The flow rates range between 7 and 66 l/s with total dissolved solids (TDS) varying between 2,020 and 4,030 mg/l. Both geological–hydrogeological setting and the similarity in chemical characteristics between the Zarat spring and nearby water wells suggest that the hot water from this spring may be related to the Senonian aquifer. However, the hydrogeothermal approach shows that the depth of the reservoir that supplies the Zarat spring is greater than that of the Senonian aquifer. In fact, geothermometry approach indicates that fluids emerging from the Lower Cretaceous sandstones reach temperatures of approximately 78°C at depth, while the fluid temperature from the nearby water wells is 32°C. Through the integration of various types of data we found that the thermal water of Southeast Tunisia is of meteoric origin. This water infiltrates deeply into the Lower Cretaceous sandstones and reaches a high temperature before rising upwards to supply the hot springs and well discharge zones. It appears that the upward movement of hot water from the deep aquifers to shallow ones is probably due to the abundant fractures in the area.

Keywords

Geothermal gradient Thermal spring Aquifer Temperature Hydrogeology Southeast Tunisia 

Notes

Acknowledgments

The authors would like to thank Dr. W. F. Jones of the University of Alberta, Canada, who greatly improved the English of the manuscript and contributed with constructive remarks.

References

  1. Arnorsson S (1983) Chemical equilibria in icelandic geothermal systems—implications for chemical geothermometry in investigations. Geothermics 12:119–128CrossRefGoogle Scholar
  2. Ascencio F, Samaniego F, Rivera J (2006) Application of a spherical-radial heat transfer model to calculate geothermal gradients from measurements in deep boreholes. Geothermics 35:70–78CrossRefGoogle Scholar
  3. Ben Ammar S (1996) Etude hydrogéologique et hydrochimique de la nappe phréatique de Gabès-Sud: Evaluation des ressources. DEA, Univ. Tunis. II, 9 ppGoogle Scholar
  4. Ben Baccar B (1982) Contribution à l’étude hydrogéologique de l’aquifère multicouche de Gabès-Sud. Thèse de 3ème cycle. Univ. Paris-Sud (Centre d’Orsay), 116 ppGoogle Scholar
  5. Ben Dhia H (1983) Le gradient géothermique dans le Sud tunisien. Rev Géol Dyn et Géogr Phys 24:351–361Google Scholar
  6. Ben Dhia H (1987) The geothermal gradient map of central Tunisia, comparison with structural, gravimetric and petroleum data. Tectonophysics 142:99–109CrossRefGoogle Scholar
  7. Ben Dhia H (1988) Tunisia geothermal data from oil wells. Geophysics 53(11):1479–1487CrossRefGoogle Scholar
  8. Ben Dhia H, Chiarelli A (1990) Hydrodynamic framework of Saharian Triassic aquifers in South Tunisia and Algeria. J Afr Earth Sci 10(3):585–589CrossRefGoogle Scholar
  9. Ben Dhia H, Bouri S (1994) Overview of geothermal activities in Tunisia. World Geothermal Congress. Florence, Italy, 18–31 May 1995Google Scholar
  10. Ben Dhia H, Jones FW, Meddeb MN, Bouri S (1992) Shallow geothermal studies in Tunisia: comparison with deep subsurface information. Geothermics 21:503–517CrossRefGoogle Scholar
  11. Ben Mohamed M (2002) Geothermal utilisation in agriculture in Kebili region, Southern Tunisia. G.H.C Bulletin, June 2002Google Scholar
  12. Bouaziz S, Barrier E, Souissi M, Turki MM, Zouari H (2002) Tectonic evolution of the northern African margin in Tunisia from paleostress data and sedimentary record. Tectonophysics 357:227–253CrossRefGoogle Scholar
  13. Bouri S (1994) Hydrothermie de surface et potentialités hydrogéothermiques du Nord tunisien. Thèse de 3eme cycle, ENI-Sfax, TunisiaGoogle Scholar
  14. Bouri S, Lahlou Mimi A, Beni Akhy R, Tagina S, Bellouti F, Ben Dhia H (1998) Les potentialités hydrogéothermiques de la Tunisie Centre-Nord. Africa Geosci Rev (AGR) 5(3):339–355Google Scholar
  15. Bouri S, Gasmi M, Zarhloule Y, Limayem A, Ben Dhia H (2003) Traitement intégré des données de température: Outil pour la recherche des hydrocarbures. Africa Geosci Rev (AGR) 10(3):259–265Google Scholar
  16. Calmbach L (1995) HYDROWIN Computer Programme. Version 3.0. Institut de Minéralogie BFSH 2, 1015 LausanneGoogle Scholar
  17. Charfi S (2004) Contribution à l’étude hydrgéologique, hydrochimique et isotopique de la nappe de la Djeffara de Gabes. Master. ENI-Sfax, 91 pGoogle Scholar
  18. Craig H (1961) Isotopic variations in meteoric water. Science 133:1702–1703CrossRefGoogle Scholar
  19. D’Amore F, Scandifio G, Panichi C (1983) Some observation on the chemical classification of ground waters. Geothermics 12(2/3):141–148CrossRefGoogle Scholar
  20. Edmunds WM, Guendous AH, Mamou A, Moula A, Shand P, Zouari K (2003) Goundwater evolution in the Continental Intercalaire aquifer of Southern Algeria and Tunisia: trace element and isotopic indicators. Appl Geochem 18:805–822CrossRefGoogle Scholar
  21. El Borgi M, Ben Baccar B (1980) Etude par prospection électrique dans Gabès-Sud. Rapp. interne. DGREGoogle Scholar
  22. Giggenbach WF, Sheppard DS, Robinson BW, Stewart MK, Lyon GL (1994) Geochemical structure and position of the Waiotapu geothermal field, New Zealand. Geothermics 23:599–644CrossRefGoogle Scholar
  23. Fournier RO (1977) Chemical geothermometers and mixing models for geothermal systems. Geothermics 5(1/4):41–50CrossRefGoogle Scholar
  24. Fournier RO, Trusdelle AH (1973) An empirical Na–K–Ca geothermometer for natural waters. Geochim Cosmochim Acta 43:1543–1550CrossRefGoogle Scholar
  25. Fournier RO, Potter RW (1979) Magnesium correction to the Na–K–Ca chemical geothermometer. Geochim Cosmochim Acta 43:1543–1550CrossRefGoogle Scholar
  26. Giggenbach WF (1986) Graphical technics for the evaluation of water-rock équilibration condition by Use of Na, K, Mg and Ca contents of, discharge waters. In: Proceedings of 8th N.Z. Geothermal Workshop. Labo. géologie, ENS, Paris, ERAG on CNRSGoogle Scholar
  27. Giggenbach WF (1983) In: Rickard DT, Wickman FE (eds) Chemistry and geochemistry of solutions at high temperatures and pressures, Pergamon Press, 1981, 564 p. Geochimica et Cosmochimica Acta 47(5):989–990Google Scholar
  28. Giggenbach WF (1988) Geothermal solute equilibria. Derivation of Na–K–Mg–Ca geoindicators. Geochim Cosmochim Acta 52:2749–2765CrossRefGoogle Scholar
  29. Lucazeau F, Ben Dhia H (1989) Preliminary heat-flow density data from Tunisia and the Pelagian Sea. Can J Earth Sci 26:993–1000Google Scholar
  30. Maget Ph, Housse BA (1985) Geological parameters used to determine the low enthalpy geothermal potential of sedimentary formations in France. Geothermics 14:207–212CrossRefGoogle Scholar
  31. Makni J (2006) Eude du potentiel en eau thermale de la région de Zarat (Gabes Sud). Master. Fac. Sci. Sfax. Univ. Sfax, 103pGoogle Scholar
  32. Mamou A (1990) Caractérisation et évaluation des reassources en eau du Sud tunisien. Thèse de doctorat d’état es sciences naturelles. Univ. Paris-Sud, centre d’Orsay, 426pGoogle Scholar
  33. Mhamdi A (2003) Contribution de la géophysique à l’étude des relais hydrogéologiques des nappes de Gabes Sud. DEA. Fac. Sc. Bizerte, 92pGoogle Scholar
  34. Michard G (1990) Behaviour of major elements and some trace elements (Li, Rb, Cs, Sr, Fe, Mn, W, F) in deep hot waters from granitic areas. Chem Geol 89:117–134CrossRefGoogle Scholar
  35. Manzoor A, Waheed A, Niaz A, Muhammad AT, Muhammad R, Zahid L (2002) Assessment of reservoir temperatures of thermal springs of the northern areas of Pakistan by chemical and isotope geothermometry. Geothermics 31:613–631CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Lab. 3E, E.N.I.SfaxSfaxTunisia

Personalised recommendations