Advertisement

Environmental Geology

, Volume 53, Issue 5, pp 993–1006 | Cite as

A genetic classification of sinkholes illustrated from evaporite paleokarst exposures in Spain

  • Francisco GutiérrezEmail author
  • Jesús Guerrero
  • Pedro Lucha
Original Article

Abstract

This contribution analyses the processes involved in the generation of sinkholes from the study of paleokarst features exposed in four Spanish Tertiary basins. Bedrock strata are subhorizontal evaporites, and in three of the basins they include halite and glauberite in the subsurface. Our studies suggest that formation of dolines in these areas results from a wider range of subsidence processes than those included in the most recently published sinkhole classifications; a new genetic classification of sinkholes applicable to both carbonate and evaporite karst areas is thus proposed. With the exception of solution dolines, it defines the main sinkhole types by use of two terms that refer to the material affected by downward gravitational movements (cover, bedrock or caprock) and the main type of process involved (collapse, suffosion or sagging). Sinkholes that result from the combination of several subsidence processes and affect more than one type of material are described by combinations of the different terms with the dominant material or process followed by the secondary one (e.g. bedrock sagging and collapse sinkhole). The mechanism of collapse includes any brittle gravitational deformation of cover and bedrock material, such as upward stoping of cavities by roof failure, development of well-defined failure planes and rock brecciation. Suffosion is the downward migration of cover deposits through dissolutional conduits accompanied with ductile settling. Sagging is the ductile flexure of sediments caused by differential corrosional lowering of the rockhead or interstratal karstification of the soluble bedrock. The paleokarsts we analysed suggest that the sagging mechanism (not included in previous genetic classifications) plays an important role in the generation of sinkholes in evaporites. Moreover, collapse processes are more significant in extent and rate in areas underlain by evaporites than in carbonate karst, primarily due to the greater solubility of the evaporites and the lower mechanical strength and ductile rheology of gypsum and salt rocks.

Keywords

Sinkholes Sinkhole classification Paleokarst Subsidence mechanisms Evaporite karst 

Notes

Acknowledgements

The original manuscript has been substantially improved thanks to the reviews of Prof. Derek Ford, Dr. Barry Beck and Dr. Tony Waltham. This work has been partially co-financed by the Spanish Education and Science Ministry and the FEDER (project CGL2004-02892/BTE).

References

  1. Ackermann RV, Schlische RW, Olsen PE (1995) Synsedimentary collapse of portions of the lower Blomidon formation (Late Triassic), Fundy rift basin, Nova Scotia. Can J Earth Sci 32:1965–1976Google Scholar
  2. Andrejchuk V, Klimchouk A (2002) Mechanisms of karst breakdown formation in the gypsum karst of the fore-ural region, Russia (from observations in the Kungurskaja Cave). Implication of speleological studies for karst subsidence hazard assessment. Int J Speleol Theme Issue N31(1–4):89–114Google Scholar
  3. Beck BF (1988) Environmental and engineering effects of sinkholes. The processes behind the problems. Environ Geol Water Sci 12:71–78CrossRefGoogle Scholar
  4. Beck BF (2004) Soil piping and sinkhole failures. In: White WB (eds) Encyclopedia of caves. Elsevier, Nueva York, pp 523–528Google Scholar
  5. Bell FG (1994) A survey of the engineering properties of some anhydrite and gypsum from the north and midlands of England. Eng Geol 38:1–23CrossRefGoogle Scholar
  6. Benito G, Pérez del Campo P, Gutiérrez M, Sancho C (1995) Natural and human-induced sinkholes in gypsum terrain and associated environmental problems in NE Spain. Environ Geol 25:156–164CrossRefGoogle Scholar
  7. Benito G, Gutiérrez F, Pérez-González A, Machado MJ (2000) Geomorphological and sedimentological features in quaternary fluvial systems affected by solution-induced subsidence (Ebro Basin, Spain). Geomorphology 33:209–224CrossRefGoogle Scholar
  8. Birk S, Liedl R, Sauter M, Teutsch G (2003) Hydraulic boundary conditions as a controlling factor in karst genesis: a numerical modeling study on artesian conduit development in gypsum. Water Resour Res 39(1):SBH 2/1–SBH 2/13Google Scholar
  9. Bögli A (1980) Karst hydrology and physical speleology. Springer, Berlin, p 284Google Scholar
  10. Christiansen EA (1971) Geology of the Crater lake collapse structure in southeastern Saskatchewan. Can J Earth Sci 8:1505–1513Google Scholar
  11. Christiansen EA, Sauer EK (2001) Stratigraphy and structure of a late Wisconsin salt collapse in the Saskatoon low south of Saskatoon, Saskatchewan, Canada: an update. Can J Earth Sci 38:1601–1613CrossRefGoogle Scholar
  12. Cooper AH (1986) Subsidence and foundering of strata caused by the dissolution of Permian gypsum in the Ripon and Bedale areas, North Yorkshire. In: Harwood GM, Smith DB (eds) The English Zechstein and related topics, vol 2. Geological Society Special Publication, Bath, pp 127–139Google Scholar
  13. Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides, investigation and mitigation. National Academy, Washington, DC, pp 36–75Google Scholar
  14. Dashnor H, Homand F, Auvray C (2006) Deformation of natural gypsum rock: mechanisms and questions. Eng Geol 86:1–17CrossRefGoogle Scholar
  15. Dias RP, Cabral J (2002) Interpretation of recent structures in an area of cryptokarst evolution-neotectonics versus subsidence genesis. Geodinámica Acta 15:233–248CrossRefGoogle Scholar
  16. Dikau R, Brunsden D, Schrott L, Ibsen ML (1996) Landslide recognition. Identification, movement and causes. Wiley, Chichester, pp 122–136Google Scholar
  17. Ege JR (1984) Mechanisms of surface subsidence resulting from solution extraction of salt. Rev Eng Geol 6:203–221Google Scholar
  18. Forbes J, Nance R (1997) Stratigraphy, sedimentology, and structural geology of gypsum caves in east central New Mexico. Carbonates Evaporites 12(1):64–72Google Scholar
  19. Ford DC (1997) Principal features of evaporite karst in Canada. Carbonates Evaporites 12:15–23Google Scholar
  20. Ford D (2000) Speleogenesis under uncofined settings. In: Klimchouk A, Ford D, Palmer A, Dreybrodt W (eds) Speleogenesis evolution of karst aquifers. National Speleological Society, Huntsville, AL, US, pp 319–324Google Scholar
  21. Ford DC, Williams P (1989) Karst geomorphology and hydrology. Unwin Hyman, Winchester, MA, p 320Google Scholar
  22. García-Castellanos D, Vergés J, Gaspar-Escribano J, Cloetingh S (2003) Interplay between tectonics, climate and fluvial transport during the Cenozoic evolution of the Ebro Basin (NE Iberia). J Geophys Res 108:B7 2347 ETG 8-1/8-18Google Scholar
  23. García del Cura MA, Dabrio CJ, Ordóñez S (1996) Mineral resources of the tertiary deposits of Spain. In: Friend PF, Dabrio CJ (eds) Tertiary basins of Spain, the stratigraphical record of crustal kinematics. Cambridge University Press, Cambridge, pp 26–40Google Scholar
  24. Ge H, Jackson MPA (1998) Physical modeling of structures formed by salt withdrawal. Implications for deformation caused by salt dissolution. AAPG Bull 82:228–250Google Scholar
  25. Guerrero J, Gutiérrez F, Lucha P (2004) Paleosubsidence and active subsidence due to evaporite dissolution in Zaragoza city area (Huerva River valley, NE Spain). Processes, spatial distribution and protection measures for linear infrastructures. Eng Geol 72:309–329CrossRefGoogle Scholar
  26. Guerrero J, Gutiérrez F, Lucha P (2007) The impact of halite dissolution subsidence on fluvial terrace development. The case study of the Huerva River in the Ebro Basin (NE Spain). Geomorphology (in press)Google Scholar
  27. Gutiérrez F (1996) Gypsum karstification induced subsidence: effects on alluvial systems and derived geohazards (Calatayud Graben, Iberian Range, Spain). Geomorphology 16:277–293CrossRefGoogle Scholar
  28. Gutiérrez F (1998) Fenómenos de subsidencia por disolución de formaciones evaporíticas en las fosas neógenas de Teruel y Calatayud (Cordillera Ibérica). Ph.D. Thesis, University of Zaragoza, p 569Google Scholar
  29. Gutiérrez F, Cooper A (2002) Evaporite dissolution subsidence in the historical city of Calatayud, Spain; damage appraisal and prevention. Nat Hazards 25:259–288CrossRefGoogle Scholar
  30. Gutiérrez F, Ortí F, Gutiérrez M, Pérez-González A, Benito G, Grácia J, Durán Valsero JJ (2001) The stratigraphical record and activity of evaporite dissolution subsidence in Spain. Carbonates Evaporites 16:46–70CrossRefGoogle Scholar
  31. Gutiérrez F, Calaforra JM, Cardona F, Ortí F, Durán JJ, Garay P (2004) El karst en las formaciones evaporíticas españolas. In: Andreo B, Durán JJ (eds) Investigaciones en sistemas kársticos españoles. IGME, Madrid, pp 49–87Google Scholar
  32. Gutiérrez F, Gutiérrez M, Marín C, Desir G, Maldonado C (2005) Spatial distribution, morphometry and activity of La Puebla de Alfindén sinkhole field in the Ebro River valley (NE Spain): applied aspect for hazard zonation. Environ Geol 48:370–383CrossRefGoogle Scholar
  33. Gutiérrez F, Galve JP, Guerrero J, Lucha P, Cendrero A, Remondo J, Bonachea J, Gutiérrez M, Sánchez JA (2007a) Typology, spatial distribution and detrimental effects of the sinkholes developed in the alluvial evaporite karst of the Ebro River valley downstream Zaragoza city. Earth Surface Processes and Landforms (in press)Google Scholar
  34. Gutiérrez F, Gutiérrez M, Gracia FJ, McCalpin JP, Lucha P, Guerrero J (2007b) Plio-Quaternary extensional seismotectonics and drainage network development in the central sector of the Iberian Range (NE Spain). Geomorphology (in press)Google Scholar
  35. Gutiérrez M, Gutiérrez F (1998) Geomorphology of the tertiary gypsum formations in the Ebro depression (Spain). Geoderma 87:1–29CrossRefGoogle Scholar
  36. Hernández A, Anadón P (1985) Teruel. Mapa geologico de Espana. Escala 1:200 000, vol 47. Instituto Geologico y Minero de Espana, Madrid, p 192Google Scholar
  37. Jackson JA (1997) Glossary of geology, 4th edn. American Geological Institute, VA, US, p 779Google Scholar
  38. Jancin M, Clark DD (1993) Subsidence-sinkhole development in light of mud infiltrate structures within interstratal karst of the coastal plain, Southeast United States. Environ Geol 22:330–336CrossRefGoogle Scholar
  39. Jassim SZ, Jibril AS, Numan NMS (1997) Gypsum karstification in the Middle miocene Fatha Formation, Mosul area, northern Iraq. Geomorphology 18:137–149CrossRefGoogle Scholar
  40. Johnson KS (1989) Salt dissolution, interstratal karst, and ground subsidence in the northern part of the Texas panhandle. In: Beck BF (ed) Engineering and environmental impacts of sinkholes and karst, proceedings of the third multidisciplinary conference on sinkholes and the engineering and the environmental impacts of karst, St. Petersburg Beach, Florida, pp 115–121Google Scholar
  41. Karacan E, Yilmaz I (2000) Geotechnical evaluation of Miocene gypsum from Sivas (Turkey). Geotech Geol Eng 18:79–90CrossRefGoogle Scholar
  42. Kerans Ch (1988) Karst-controlled reservoir heterogeneity in Ellenburger group carbonates of west Texas. AAPG Bull 72:1160–1183CrossRefGoogle Scholar
  43. Kirkham RM, Streufert RK, Kunk MJ, Budhan JR, Hudson MR, Perry WJ (2002) Evaporite tectonism in the lower roaring fork river valley, west-central Colorado. In: Kirkham RM, Scott RB, Judkins TW (eds) Late cenozoic evaporite tectonism and volcanism in west-central Colorado, vol 366. Geological Society of America special paper, pp 73–99Google Scholar
  44. Klimchouk A (2000) The formation of epikarst and its role in vadose speleogenesis. In: Klimchouk A, Ford D, Palmer A, Dreybrodt W (eds) Speleogenesis evolution of karst aquifers. National Speleological Society, Huntsville, AL, US, pp 91–99Google Scholar
  45. Klimchouk A, Andrejchuk V (1996) Breakdown development in cover beds and landscape features induced by intrastratal gypsum karst. Int J Speleol 25(3–4):127–144Google Scholar
  46. Klimchouk A, Aksem SD (2005) Hydrochemistry and solution rates in gypsum karst: case study from the Western Ukraine. Environ Geol 48:307–319CrossRefGoogle Scholar
  47. Klimchouk A, Andrejchuk V (2005) Karst breakdown mechanisms from observations in the gypsum caves of the western Ukraine: implications for subsidence hazard assessment. Environ Geol 48:336–359CrossRefGoogle Scholar
  48. Klimchouk A, Cucchi F, Calaforra JM, Aksem SD, Finocchiaro F, Forti P (1996) Dissolution of gypsum from field observations. Int J Speleol (Italian Edition) 25:37–48Google Scholar
  49. Lauritzen SE, Lundberg J (2000) Solutional and erosional morphology. In: Klimchouk A, Ford D, Palmer A, Dreybrodt W (eds) Speleogenesis evolution of karst aquifers. National Speleological Society, Huntsville, AL, US, pp 408–426Google Scholar
  50. Loucks RG (1999) Paleocave carbonate reservoirs: origins, burial-depth modifications, spatial complexity and reservoir implications. AAPG Bull 83(11):1795–1834Google Scholar
  51. Lu Y, Cooper AH (1997) Gypsum karst geohazards in China. In: Beck BF, Stephenson JB (eds) The engineering geology and hydrogeology of karst terranes. AA Balkema, Rotterdam, pp 117–125Google Scholar
  52. Ortí F (1988) Sedimentación evaporítica continental durante el terciario de la Península Ibérica: aspectos generales. II Congreso Geológico de España, Simposios, Granada, pp 509–518Google Scholar
  53. Ortí F (2000) Unidades glauberíticas del terciario ibérico: nuevas aportaciones. Rev Soc Geológica de España 13(2):65–87Google Scholar
  54. Ortí F, Salvany JM (1997) Continental evaporitic sedimentation in the Ebro basin during the Miocene. In: Busson G, Schreiber BCh (eds) Sedimentary deposition in rift and foreland basins in France and Spain. Columbia University Press, NY, US, pp 420–439Google Scholar
  55. Ortí F, Rosell L (2000) Evaporites systems and diagenetic patterns in the Calatayud Basin (Miocene, central Spain). Sedimentology 47:317–324CrossRefGoogle Scholar
  56. Osborne RAL (2000) Paleokarst and its significance for speleogenesis. In: Klimchouk A, Ford D, Palmer A, Dreybrodt W (eds) Speleogenesis evolution of karst aquifers. National Speleological Society, Huntsville, AL, US, pp 133–123Google Scholar
  57. Osborne RAL (2002) Cave breakdown by vadose weathering. Int J Speleol 31:37–53Google Scholar
  58. Palmer AN (2000) Hydrogeologic control of cave patterns. In: Klimchouk A, Ford D, Palmer A, Dreybrodt W (eds) Speleogenesis evolution of karst aquifers. National Speleological Society, Huntsville, AL, US, pp 77–90Google Scholar
  59. Salinas JL (2004) Diccionario guía de reconocimientos geológicos para ingeniería civil. Ministerio de Fomento, Cedes, Madrid, p 208Google Scholar
  60. Selby MJ (1993) Hillslope materials and processes, 2nd edn. Oxford Universty Press, Oxford, England, p 451Google Scholar
  61. Sowers GF (1996) Building on sinkholes. ASCE, New York, p 202Google Scholar
  62. Tharp TM (1995) Mechanics of upward propagation of cover-collapse sinkholes. Eng Geol 52:23–33CrossRefGoogle Scholar
  63. Torrescusa S, Klimowitz J (1990) Contribución al conocimiento de las evaporitas Miocenas (Fm. Zaragoza) de la Cuenca del Ebro. In: Ortí F, Salvany JM (eds) Formaciones evaporíticas de la Cuenca del Ebro y cadenas periféricas y de la zona de Levante. ENRESA-GPPG, Barcelona, Spain, pp 120–123Google Scholar
  64. Waltham T (1989) Ground subsidence. Chapman and Hall, NY, US, p 188Google Scholar
  65. Waltham T, Bell F, Culshaw M (2005) Sinkholes and subsidence. Karst and cavernous rocks in engineering and construction. Springer, Chichester, p 382Google Scholar
  66. Warren J (1999) Evaporites. Blackwell Science, Oxford, UK, p 438Google Scholar
  67. White WB (1988) Geomorphology and hydrology of karst terrains. Oxford University Press, Oxford, UK, p 464Google Scholar
  68. White EL, White WB (1969) Processes of cavern breakdown. Natl Speleological Soc Bull 31:83–96Google Scholar
  69. White EL, White WB (2000) Breakdown morphology. In: Klimchouk A, Ford D, Palmer A, Dreybrodt W (eds) Speleogenesis evolution of karst aquifers. National Speleological Society, Huntsville, AL, US, pp 427–429Google Scholar
  70. Williams PW (1983) The role of the subcutaneous zone in karst hydrology. J Hydrol 61:45–67CrossRefGoogle Scholar
  71. Williams P (2003) Dolines. In: Gunn J (ed) Encyclopedia of caves and karst science. Taylor and Francis Group, NY, US, pp 304–310Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Francisco Gutiérrez
    • 1
    Email author
  • Jesús Guerrero
    • 1
  • Pedro Lucha
    • 1
  1. 1.Earth Science Department, Edificio GeológicasUniversidad de ZaragozaZaragozaSpain

Personalised recommendations