Advertisement

Environmental Geology

, Volume 52, Issue 2, pp 339–352 | Cite as

Gypsum: a review of its role in the deterioration of building materials

  • A. Elena CharolaEmail author
  • Josef Pühringer
  • Michael Steiger
Original Article

Abstract

The deterioration of buildings and monuments by gypsum is the result of crystallization cycles of this salt. Although gypsum can dehydrate to a hemihydrate, the mineral bassanite, and to an anhydrate, the mineral anhydrite, this reaction occurs in nature on a geological time scale and therefore it is unlikely to occur when gypsum is found on and in building materials. The CaSO4–H2O system appears deceptively simple, however there are still discrepancies between the experimental and thermodynamically calculated data. The reason for the latter can be attributed to the slow crystallization kinetics of anhydrite. Apart from this, the large numbers of studies carried out on this system have focused on industrially important metastable phases, such as the hemihydrate and soluble anhydrite. The paper presents a review of the studies dealing with the phase equilibria of the CaSO4–H2O system as well as the influence of other salts on the solubility of gypsum. It tries to glean out the relevant information that will serve to explain the deterioration observed on building materials by the crystallization of gypsum and thus allows developing improved conservation methods.

Keywords

Gypsum Solubility Deterioration action Phases Crystallization kinetics 

Notes

Acknowlegments

The authors gratefully acknowledge Christine Bläuer Böhm, Konrad Zehnder and Andreas Kueng for providing information on the natural occurrence of bassanite on building materials.

References

  1. Abrate-Zohar MA, Zezza U, Veniale F, Setti M (1985) Decay stage and causes of the terra-cotta ornaments (Cloister of the Carthusian Monastery, Pavia. Italy. In: 5th International congress on deterioration and conservation of stone. Presses Polytechniques Romandes, Lausanne, pp 443–451Google Scholar
  2. Archer DG (1992) Thermodynamic properties of NaCl + H2O system. II. Thermodynamic properties of NaCl (aq), NaCl 2H2O (cr), and phase equilibria. J Phys Chem Ref Data 21:793–821CrossRefGoogle Scholar
  3. Arnold A, Kueng A (1985) Crystallization and habits of salt efflorescences on walls. I. Methods of investigation and habits. In: 5th International congress on deterioration and conservation of stone. Presses Polytechniques Romandes, Lausanne, pp 255–277Google Scholar
  4. Ausset P, Lefèvre RA, Del Monte M (2000) Early mechanisms of development of sulphated black crusts on carbonate stone. In: Fassina V (ed) 9th Intl. Congress on Deterioration and Conservation of Stone (Venice), vol 1. Elsevier, Amsterdam, pp 329–337Google Scholar
  5. Baboian R (1986) Materials degradation caused by acid rain. ACS Symposium Series 318, American Chemical Society, Washington, DC 1986Google Scholar
  6. Badan B, Bacelle G, Marchesini L (1976) Surface reactivity of marble and stone: Quarry and Altered Samples. In: Rossi-Manaresi R (ed) The conservation of stone I. Centro per la Conservazione delle Sculture all’aperto, Bologna, pp 89–101Google Scholar
  7. Bayer K (2006) Gypsum—An overlooked corrosive factor for some types of silicate sandstones in Bohemia. In: Proceedings of the SALTeXPERT Workshop ARIADNE 13, Prague, ARCCHIP and GCI, 2002 (in press)Google Scholar
  8. Begohna A, Teles M (2000) Study of stone deterioration in the Palácio do Freixo in Oporto. In: Fassina V (ed.) 9th Intl. Congress on Deterioration and Conservation of Stone (Venice), Vol.2. Elsevier, Amsterdam, pp 593–601Google Scholar
  9. Bläuer C (1985) Weathering of Bernese sandstone. In: 5th Intl. Congress on Deterioration and Conservation of Stone. Presses Polytechniques Romandes, Lausanne, pp 381–409Google Scholar
  10. Block J, Waters OB (1968) The CaSO4-Na2SO4-NaCl-H2O system at 25° to 100°. J Chem Eng Data 13:336–344CrossRefGoogle Scholar
  11. Bock E (1961) On the solubility of anhydrous calcium sulphate and of gypsum in concentrated solutions of sodium chloride at 25°C, 30°C, 40°C and 50°C. Can J Chem 39:1746–1751CrossRefGoogle Scholar
  12. Bortolaso G, Lazzarini L, Mengazzo Vitturi L, Rampazzo G (1988) The deterioration of “Rosso Ammonitico Veronese” nodular limestone: Comparison between a quarry and a Venetian monument. In: 6th Intl. Congress on Deterioration and Conservation of Stone. Nicholas Copernicus University Press Department, Torun, pp 97–109Google Scholar
  13. Building Effects review group report (1989) The effects of acid deposition on buildings and building materials. Her Majesty’s Stationary Office, LondonGoogle Scholar
  14. Calaforra Chordi JM (1998) Caracterización geomorfológica del karst en yeso (Geomorphological characterization of gypsum karsts). In: Karstología de yesos (Karst formation in gypsum deposits). Universidad de Almería, Servicio de Publicaciones. Instituto de Estudios Almerienses, Almería, 69–195Google Scholar
  15. Charola AE (2000) Salts in the deterioration of porous materials: an overview. J Am Inst Conserv 39:332–343Google Scholar
  16. Charola AE (2001) Acidic deposition on stone: a literature survey. US/ICOMOS Sci J 3:19–58Google Scholar
  17. Charola AE (2003) Salt deterioration: open questions. In: Mauersalze und Architekturoberflächen (Salts in walls and architectural surfaces). Leitner H, Laue S and Siedel H (eds). Hochschule für Bildende Künste, Dresden: 10–24Google Scholar
  18. Charola AE, Lewin SZ (1979) Efflorescences on building stones—SEM in the characterization and elucidation of the mechanisms of formation. Scanning Electron Microscopy/1979/I:378–386Google Scholar
  19. Charola AE, Koestler RJ (1985/86) SEM Study of the deterioration of monumental stones in Vienna. In: Vendl A, Pichler B, Weber J, Banik G (eds) Wiener Berichte über Naturwissenschaft in der Kunst. Vol.2/3. Orac,Vienna, pp 176–186Google Scholar
  20. Charola AE, Weber J (1992) The hydration-dehydration mechanism of sodium sulphate. In: Delgado Rodrigues J, Enriques F, Telmo Jeremias F (eds) 7th International congress on deterioration and conservation of stone. Laboratório Nacional de Engenharia Civil, Lisbon, pp 581–590Google Scholar
  21. Charola AE, Centeno SA (2002) Analysis of gypsum-containing lime mortars: Possible errors due to the use of different drying conditions. J Am Inst Conserv 41:269–278CrossRefGoogle Scholar
  22. Charola AE, Ware R (2002) Acid deposition and the deterioration of stone: a brief review of a broad topic. In: Siegesmund S, Weiss R and Vollbrecht A (eds) Natural stone, weathering phenomena, conservation strategies and case studies. Geol Soc Lond Spec Publ 205:393–406Google Scholar
  23. Charola AE, Pühringer J (2005) Salts in the deterioration of porous materials: a call for the right questions. Restor Build Monum 11:433–42Google Scholar
  24. Clegg SL, Rard JA, Pitzer KS (1994) Thermodynamic properties of 0–6 mol kg–1 aqueous sulfuric acid from 273.15 to 328.15 K. J Chem Eng Data 90:1875–1894Google Scholar
  25. D’Ans (1968) Der Übergangspunkt Gips→Anhydrit (The transition point gypsum→anhydrite). Kali Steinsalz 5:109–111Google Scholar
  26. D’Ans J, Bredtschneider D, Eick H, Freund H-E (1955) Untersuchungen über die Calciumsulphate (Investigations on the sulfates of calcium). Kali Steinsalz 1:17–38Google Scholar
  27. Davis WA (1907) The nature of the changes involved in the production and setting of plaster of paris. J Soc Chem Ind 26:727–738Google Scholar
  28. Deer WA, Howie RA, Zussman J (1975) Rock-Forming Minerals Vol. 5 Non-Silicates. Longman, London (1962) 7th impression: 202–218Google Scholar
  29. Dudnikova KT, Samoilov OYa (1963) Solubility of gypsum in aqueous solutions of salting-out agents. Sov Radiochem 5:644–646Google Scholar
  30. Fassina V, Lazzarini, Biscontin G, Calogero S (1979) Influenza del materiale particellare atmosférico sui processi di degradazione della pietra a Venezia (Influence of atmospheric particulates on the deterioration process of the stones in Venice). In: 3rd International congress on deterioration and conservation of stone (Venice). Università degli Studi di Padova, Padua, pp 43–53Google Scholar
  31. Franchi R, Manganelli Del Fà C (1979) Ricerche sulla degradazione delle “Pietre”: IX. Il Cristo del Sansovino. In: 3rd Intl. Congress on Deterioration and Conservation of Stone (Venice). Università delgi Studi di Padova, Padua, pp 481–490Google Scholar
  32. Franke L, Grabau J (1998) Influence of salt content on the drying behavior of brick. In: Baer NS, Fitz S, Livingston RA (eds) Conservation of historic brick structures. Donhead, Shaftesbury, pp 59–68Google Scholar
  33. Freyer D, Voigt W (2003) Crystallization and phase stability of CaSO4 and CaSO4-based salts. Monatsh Chem 134:693–719Google Scholar
  34. Goudie A, Viles H (1997) Salt weathering hazards. Wiley, ChichesterGoogle Scholar
  35. Grassegger G (2002) Restoration of the sarcophagus of Duke Melchior von Hatzfeld—the accompanying scientific and technical investigations. Otto Graf J 13:141–154Google Scholar
  36. Grimm WD, Schwarz U (1985) Naturwerksteine und ihre Verwitterung an Münchner Bauten und Dankmälern (Natural stone and their deterioration in buildings and monuments in Munich). In: Natursteinkonservierung. Arbeitsheft 31. Bayerisches Landesamt für Denkmalpflege, Munich, pp 28–118Google Scholar
  37. Haber J, Haber H, Kozlowski R, Magiera J, Pluska I (1988) Air pollution and decay of architectural monuments in the city of Cracow. In: Rosvall J, Aleby S (eds) Air pollution and conservation. Safeguarding our cultural heritage. Elsevier, Amsterdam, pp 499–547Google Scholar
  38. Hardie LA (1967) The gypsum–anhydrite equilibrium at one atmosphere pressure. Am Mineral 52:171–200Google Scholar
  39. Heusinger von Waldegg E (1906) Der Gips (Gypsum). In: Moye A (ed) 2nd edn. Theod. Thomas Verlag, LeipzigGoogle Scholar
  40. Hill AE (1934) Ternary systems. XIX. Calcium sulfate, potassium sulfate and water. J Am Chem Soc 56:1071–1078CrossRefGoogle Scholar
  41. Hill AE (1937) The transition temperature of gypsum to anhydrite. J Am Chem Soc 59:2242–2244CrossRefGoogle Scholar
  42. Hill AE, Yanick NS (1935) Ternary system. XX. Calcium sulfate, ammonium sulfate and water. J Am Chem Soc 57:645–651CrossRefGoogle Scholar
  43. Hill AE, Wills JH (1938) Ternary systems. XXIV. Calcium sulfate, sodium sulfate and water. J Am Chem Soc 60:1647–1655CrossRefGoogle Scholar
  44. Hulett GA (1905) The solubility of gypsum as affected by size of particles and by different crystallographic surfaces. J Am Chem Soc 27:49–56CrossRefGoogle Scholar
  45. Hulett GA, Allen LE (1902) The solubility of gypsum. J Am Chem Soc 24:667–679CrossRefGoogle Scholar
  46. Kelley KK, Southard JC, Anderson CT (1941) Thermodynamic properties of gypsum and its dehydration products. US Bur Mines Tech Pap 625Google Scholar
  47. Knacke O, Gans W (1977) The thermodynamics of the system CaSO4–H2O. Z Phys Chem NF 104:41–48Google Scholar
  48. Lazzarini L, Fassina V (1979) Studio scientifico sullo stato di conservazione delle pietre e dei marmi della Porta della Carta di Venezia (Scientific study on state of conservation of the stones and marbles of the Porta della Carta in Venice). In: 3rd Intl. Congress on Deterioration and Conservation of Stone (Venice). Università delgi Studi di Padova, Padua, pp 647–660Google Scholar
  49. Lazzarini L, Laurenzi Tabasso M (1986) Il restauro della pietra (The restoration of stone) Cedam, Padua: 22Google Scholar
  50. Le Chatelier H (1887) Recherches expérimentales sur la constitution des mortier hydrauliques (Experimental research on the composition of hydraulic mortars). Dunod, ParisGoogle Scholar
  51. Leitner H (2005) The treatment of wall paintings affected by salts: an interdisciplinary task as seen from a conservator’s perspective. Restor Build Mon 11:365–380Google Scholar
  52. Madgin WM, Swayles DA (1956) Solubilities in the system CaSO4-NaCl-H2O at 25° and 35°. J Appl Chem 6:482–487CrossRefGoogle Scholar
  53. Marshall WL, Slusher R (1966) Thermodynamics of calcium sulfate dihydrate in aqueous sodium chloride solutions, 0–110°. J Phys Chem 70:4015–4027CrossRefGoogle Scholar
  54. Neumann HH, Steiger M, Wassmann A, Dannecker W (1993) Aufbau und Ausbildung schwarzer Gipskrusten und damit zusammenhängender Gefügeschäden von Naturwerksteinen am Beispiel des Leineschlosses, Hannover (Formation and development of black gypsum crusts and related deterioration of the structure of natural stones as exemplified by the Leineschloss in Hanover). In: Snethlage R (ed) Steinzerfall-Steinkonservierung, Vol. 3–1991, Verlag Ernst & Sohn, Berlin, pp 51–167Google Scholar
  55. Neumann HH, Lork A, Steiger M, Juling H (1997) Decay patterns of weathered quartz sandstones: evidence of gypsum induced structural changes. In: Sveinsdottir EL (ed) Proceedings of the 6th Euroseminar on microscopy applied to building materials, Icelandic Building Research Institute, Reykjavic, pp 238–249Google Scholar
  56. Nunberg S, Charola AE (2001) Salts in Ceramic Bodies II: deterioration due to minimal changes in relative humidity. Int J Restor Build Mon 7:131–146Google Scholar
  57. Ottemann J (1952) Baustoff Anhydrit. (Construction material anhydrite) Verlag Technik, BerlinGoogle Scholar
  58. Partridge EP, White AH (1929) The solubility of calcium sulfate from 0 to 200°. J Am Chem Soc 51:360–370CrossRefGoogle Scholar
  59. Posnjak E (1938) The system CaSO4–H2O. Am J Sci 35A:247–272Google Scholar
  60. Posnjak E (1940) Deposition of calcium sulfate from sea water. Am J Sci 238:559–568CrossRefGoogle Scholar
  61. Power WH, Fabuss BM, Satterfield CN (1964) Transient solubilities in the calcium sulfate-water system. J Chem Eng Data 9:437–442CrossRefGoogle Scholar
  62. Power WH, Fabuss BM, Satterfield CN (1966) Transient solute concentrations and phase changes of calcium sulfate in aqueous sodium chloride. J Chem Eng Data 11:149–154CrossRefGoogle Scholar
  63. Pühringer J (1983a) Salt disintegration: salt migration and degration by salt—a hypothesis. D15:1983 Swedish Council for Building Research, StockholmGoogle Scholar
  64. Pühringer J (1983b) Salzwanderungen und Verwitterung durch Salze (Salt migration and weathering through salts). In: Wittmann FH (ed) Materials Science and Restoration. Edition Lack + Chemie, Filderstadt, pp 361–366Google Scholar
  65. Robie RA, Russel-Robinson S, Hemingway BS (1989) Heat capacities and entropies from 8 to 1000 K of langbeinite (K2Mg2(SO4)3), anhydrite (CaSO4) and of gypsum (CaSO4·2H2O) to 325 K. Thermochim Acta 139:67–81CrossRefGoogle Scholar
  66. Rossi-Manaresi R, Alessandrini G, Fuzzi S, Peruzzi R (1979) Assessment of the Effectiveness of Some Preservatives for Marble and Limestones. In: 3rd Intl. Congress on Deterioration and Conservation of Stone (Venice). Università degli Studi di Padova, Padua, pp 357–376Google Scholar
  67. Rosval J, Aleby S (1986) Air pollution and conservation. Safeguarding our architectural heritage. Elsevier, AmsterdamGoogle Scholar
  68. Shternina EB (1949) Solubility of gypsum in salt solutions. Izvest Sektora Fiz-Khim Anal, Inst Obshchei Neorg Khim, Akad Nauk S.S.S.R. 17:351–369 (in Russian)Google Scholar
  69. Shternina EB (1957) Maximums on the solubility isotherms for calcium sulfate and calcium carbonate. Zh Neorg Khim 2:933–937 (in Russian)Google Scholar
  70. Seidell A, Smith JG (1904) The solubility of calcium sulphate in solutions of nitrates. J Phys Chem 8:493–499CrossRefGoogle Scholar
  71. Smykatz-Kloss W, Istrate G, Hötzl H, Wohnlich S (1985) Vorkommen und Entstehung von Bassanit, CaSO4·0.5H2O), im Gipskarstgebiet von Foum Tatahouine, Südtunesien. (Occurrence and formation of bassanite in the gypsum karst region of Foum Tatahouine, South Tunesia). Chem Erde 44:67–77Google Scholar
  72. Snethlage R (1984) Steinkonservierung 1979–1983 (Stone conservation 1979–1983) Arbeitsheft 22, Bayerisches Landesamt für Denkmalpflege. Munich: 13–83Google Scholar
  73. Snethlage R, Wendler E (1997) Moisture cycles and sandstone degradation. In: Baer NS, Snethlage R (eds) Saving our architectural heritage: the conservation of historic stone structures. Wiley, Chichester, pp 7–24Google Scholar
  74. Snethlage R, Wendler E, Klemm DD (1996) Tenside im Gesteinschutz—Bisherige Resultate mit einem neuen Konzept zur Erhaltung von Denkmälern aus Naturstein (Tensides in the protection of stone—Results from a new concept for the conservation of monuments in natural stone). In: Snethlage R (ed) Denkmalpflege und Naturwissenschaft. Natursteinkonservierung I. Ernst & Sohn, Berlin, pp 127–146Google Scholar
  75. Steiger M (2003) Crusts and salts. In: Brimblecombe P (ed) The effects of air pollution on the built environment. Air pollution reviews, vol 2. Imperial College Press, London, pp 133–181Google Scholar
  76. Steiger M (2005) Crystal growth in porous materials: I. The crystallization pressure of large crystals. J Cryst Growth 282:455–469CrossRefGoogle Scholar
  77. Tucci A, Koestler RJ, Charola AE, Rossi-Manaresi R (1985) The influence of acid rain and UV radiation on the ageing of acrylic and silicone resins. In: 5th International congress on deterioration and conservation of stone. Presses Polytechniques Romandes, Lausanne, pp 891–898Google Scholar
  78. van’t Hoff JH (1909), Zur Bildung der ozeanischen Salzablagerungen (On the formation of the oceanic salt deposits). Zweites Heft. Vieweg und Sohn, BraunschweigGoogle Scholar
  79. van’t Hoff JH, Armstrong EF, Hinrichsen W, Weigert F, Just G (1903) Gips und Anhydrit (Gypsum and anhydrite). Z Phys Chem 45:257–306Google Scholar
  80. von Konow T (2001) Mechanisms of brick deterioration due to salts: new results on salt behaviour from in-situ studies at the Suomenlinna Fortress in Finland. Int J Restor Build Monum 7:675–688Google Scholar
  81. Weber J (1993) Salt-induced deterioration of Romanesque wall paintings in the church of St. Georgen, Styria, Austria. In: Biscontin G, Graziano L (eds) Conservation of architectural surfaces: stones and wall coverings. Il Cardo, Venice, pp 97–103Google Scholar
  82. Weber J, Leitner H, Gaggl W and Szambelan R (1996) Crystallization of sulphate salts induced by selective salt extraction by poultices: results from a case study. In: Preprints of the european research workshop on origin, mechanisms and effects of salts on degradation of monuments in marine and continental environments, Bari, pp 169–170Google Scholar
  83. Weiser HB, Millligan WO, Ekholm WC (1936) The mechanism of the dehydration of calcium sulfate hemihydrate. J Amer Chem Soc 58:1261–1265CrossRefGoogle Scholar
  84. Winkler EM (1975) Stone: properties, durability in man’s environment, 2nd edn. Springer, Vienna and New YorkGoogle Scholar
  85. Yeatts LB, Marshall WL (1969) Apparent invariance of activity coefficients of calcium sulfate at constant ionic strength and temperature in the system CaSO4–Na2SO4–NaNO3–H2O to the critical temperature of water. Association equilibria. J Phys Chem 73:81–90CrossRefGoogle Scholar
  86. Yeatts LB, Marshall WL (1972) Solubility of calcium sulfate dihydrate and association equilibria in several aqueous mixed electrolyte salt systems at 25 °C. J Chem Eng Data 17:163–168CrossRefGoogle Scholar
  87. Young ME, Jones MS, MacDonald J, Urquhart DCM, Nicholson K, McHardy WJ (1996) Investigations on the soiling and cleaning of some Scottish granites. Degradation and conservation of granitic rocks in monuments. Research report No.5. Environmental Protection and Conservation of the European Cultural Heritage. European Commission, Brussels, pp 429–434Google Scholar
  88. Zdanovskii AB, Vlasov GA (1968) Determination of the boundaries of the reciprocal transformations CaSO4·2H2O and γ-CaSO4 in H2SO4 solutions. Russ J Inorg Chem 13:1318–1319Google Scholar
  89. Zen E-an (1965) Solubility measurements in the system CaSO4–NaCl–H2O at 35°, 50°, and 70°C and one atmosphere pressure. J Petrol 6:124–164Google Scholar
  90. Zehnder K (1982) Verwitterung von Molassensandsteinen an Bauwerken und in Naturaufschlüssen (Weathering of Molasse sandstones in buildings and in natural occurrences) Beiträge zur Geologie der Schweiz, Geotechnische Serie 61:86Google Scholar
  91. Zehnder, K (1993) New aspects of decay caused by crystallization of gypsum. In: Thiel M-J (ed) Conservation of stone and other materials. Vol 1 E & FN Spon, London, pp 107–114Google Scholar
  92. Zehnder, K (1996) Gyspsum efflorescences in the zone of rising damp. Monitoring of slow decay processes caused by crystallizing salts on wall paintings. In: Riederer J (ed) Proceedings 8th International congress on deterioration and conservation of stone. Möller Druck, Berlin, pp 1669–1678Google Scholar
  93. Zehnder K, Arnold A (1989) Crystal growth in salt efflorescence. J Cryst Growth 97:513–521CrossRefGoogle Scholar
  94. Zhang Y, Muhammed M (1989) Solubility of calcium sulfate dihydrate in nitric acid solutions containing calcium nitrate and phosphoric acid. J Chem Eng Data 34:121–124CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • A. Elena Charola
    • 1
    Email author
  • Josef Pühringer
    • 2
  • Michael Steiger
    • 3
  1. 1.WMF-P, Mosteiro dos JerónimosLisbonPortugal
  2. 2.TäbySweden
  3. 3.Chemistry Department, Inorganic and Applied ChemistryUniversity of HamburgHamburgGermany

Personalised recommendations