Environmental Geology

, Volume 52, Issue 2, pp 205–213 | Cite as

Salt crystallization in pores: quantification and estimation of damage

  • Matthieu AngeliEmail author
  • Jean-Philippe Bigas
  • David Benavente
  • Beatriz Menéndez
  • Ronan Hébert
  • Christian David
Original Article


The objective of this study is to understand and predict the alteration of porous rock by crystallization of salts. Samples of different rocks have been tested according to the EN 12370 standard test. Two parameters are proposed to evaluate the alteration of a rock during these tests. The alteration index AI represents the cycle in which the first damages occur. The alteration velocity AV represents the alteration rate at the end of the experiment, when the decay has become regular. These parameters can be estimated with the help of a microstructural study of the rocks. The most relevant intrinsic parameters of the stones for this estimation are capillary coefficient, evaporation coefficient, tensile strength and P-waves velocity. An evaluation of the alteration pattern is also proposed depending on the eventual heterogeneities and anisotropies of the rocks. The influence of the dimension and shape of the samples is also discussed.


Salt crystallization Alteration Quantification Estimation Evaporation Durability 



The authors would like to thank M. Pallix from ROCAMAT (Saint-Maximin-sur-Oise) for providing LL, RL and FL, and M. Oliveira (Moigny-sur-Ecole) for the other samples. The authors would also like to thank the reviewer for his helpful comments.


  1. Angeli M, Bigas JP, Menéndez B, Hébert R, David C (2006) Influence of capillary properties and evaporation on salt weathering of sedimentary rocks. In: Fort R, Alvarez de Buergo M, Gomez-Heras M, Vazquez-Calvo C (eds) Heritage, Weathering and Conservation. Taylor & Francis/Balkema, Leiden, pp 253–259Google Scholar
  2. Beck K, Al-Mukhtar M, Rozenbaum O, Rautureau M (2003) Characterization, water transfer properties and deterioration in tuffeau: building material in the Loire valley—France. Build Environ 38:1151–1162CrossRefGoogle Scholar
  3. Benavente D, García del Cura MA, García-Guinea J, Sánchez-Moral S, Ordoñez S (2004a) The role of pore structure in salt crystallisation in unsaturated porous stone. J Cryst Growth 260:532–544CrossRefGoogle Scholar
  4. Benavente D, Garcia del Cura MA, Fort R, Ordoñez S (2004b) Durability of porous building stones from pore structure and strength. Eng Geol 74:113–127CrossRefGoogle Scholar
  5. EN 12370 (1999) Natural stone test methods—determination of resistance to salt crystallization, 1999–2003Google Scholar
  6. Flatt RJ (2002) Salt damage in porous materials: how high supersaturations are generated. J Cryst Growth 242:435–454CrossRefGoogle Scholar
  7. Hammecker C (1993) Importance des transferts d’eau dans la dégradation des pierres en œuvre. Ph.D. Thesis, University of Strasbourg, FranceGoogle Scholar
  8. Kracek FC (1928) Int Critical Tables 3, p 371Google Scholar
  9. Rodriguez-Navarro C, Doehne E (1999) Salt weathering: influence of evaporation rate, supersaturation and crystallization pattern. Earth Surf Process Landforms 24:191–209CrossRefGoogle Scholar
  10. Rodriguez-Navarro C, Doehne E, Sebastian E (2000) How does sodium sulphate crystallize? Implications for the decay and testing of building material. Cement Concrete Res 30:1527–1534CrossRefGoogle Scholar
  11. Rose DA (1963) Water movement in porous materials—II: the separation of the components of water movement. Br J Appl Phys 14:491–496CrossRefGoogle Scholar
  12. Scherer G (1999) Crystallization in pores. Cement Concrete Res 29:1347–1358CrossRefGoogle Scholar
  13. Scherer G (2004) Stress from crystallization of salt. Cement Concrete Res 34:1613–1624CrossRefGoogle Scholar
  14. Steiger M (2005) Crystal growth in porous materials—I: the crystallization pressure of large crystals. J Cryst Growth 282:455–469CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Matthieu Angeli
    • 1
    Email author
  • Jean-Philippe Bigas
    • 1
  • David Benavente
    • 2
  • Beatriz Menéndez
    • 1
  • Ronan Hébert
    • 1
  • Christian David
    • 1
  1. 1.Département de Sciences de la Terre et Environnement, Laboratoire de Pétrophysique et Tectonique des bassins, CNRS UMR 7072Université de Cergy-PontoiseCergy-Pontoise CedexFrance
  2. 2.Departamento de Ciencias de la Tierra y del Medio Ambiente, Laboratorio de Petrologia AplicadaUniversidad de AlicanteAlicanteEspaña

Personalised recommendations