Environmental Geology

, Volume 51, Issue 1, pp 47–64 | Cite as

Sulphide-mining impacts in the physical environment: Sierra de Cartagena–La Unión (SE Spain) case study

  • V. M. Robles-ArenasEmail author
  • R. Rodríguez
  • C. García
  • J. I. Manteca
  • L. Candela
Original Article


The environmental impact and potential-risk assessment of an abandoned sulphide-mining site in a semiarid climate is presented here, by the study case of Sierra de Cartagena–La Unión (SE Spain), a 2,500-year-old mining district extending over an area of 100 km2. The regional map illustrates the existence of 12 open-pits, 1,902 mining wells, 2,351 waste deposits, including 89 tailing dams and waste rock derived from mining processes. Mine wastes occupy an area of 9 km2 and have an approximate volume of 200 Mm3. Mineralogical, physical and chemical data distinguish nine different types of mine and metallurgical waste. According to the concentration of sulphate and heavy metals in sediment, soil, rainwater, surface water and groundwater samples, it is possible to conclude that the impact of mine activities occurs not only in the immediate mining area (100 km2), but also in the surrounding areas (an affected area of 1,000 km2 approximately). The hydrochemical data show that groundwater, runoff water and some rainwater samples exceed Spanish and European water quality guideline values for water supply. The main geochemical process recognised is sulphide-mineral oxidation and later-generated sulphate dissolution by groundwater and runoff. Runoff and wind are the major mechanisms of metals and sulphate transport in the study area and adjacent zones.


Mine and metallurgical waste Environmental impact and risk Mine closure Spain Sierra de Cartagena–La Unión 



The authors would like to thank the Ministerio de Educación y Ciencia of Spain (PPQ2001-2100-C04) and the Seneca Foundation of Murcia, Spain (PB/44/FS/2002), for the economic support to carry out this project, and the collaboration of the Chemistry Department of Girona University. Anonymous reviewers are thanked for the constructive analysis of this manuscript.


  1. Ashley PM, Lottermoser BG, Collins AJ, Grant CD (2004) Environmental geochemistry of the derelict Webbs Consols mine, New South Wales, Australia. Environ Geol 46:591–604CrossRefGoogle Scholar
  2. Auernheimer C, Llavador F, Pina JA (1984) Chemical minority elements in bivalve shells. A natural model (Mar Menor, Spain). Arch Sci Genève 37(3):317–331Google Scholar
  3. Banks D, Younger PL, Arnesen RT, Iversen ER, Banks SB (1997) Mine-water chemistry: the good, the bad and the ugly. Environ Geol 32:157–174CrossRefGoogle Scholar
  4. Buurman P, Van Lagen B, Velthorst EJ (1996) Manual for soil and water analysis. Backhuys Publishers, Leiden, The Netherlands, pp 291Google Scholar
  5. CHS (1997) Plan hidrológico de la cuenca del Segura. Memoria. Murcia, pp 363.
  6. Conesa HM, Faz A, Arnaldos R (2006) Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena–La Unión mining district (SE Spain). Sci Total Environ (in press). DOI 10.1016/j.scitotenv.2005.12.008Google Scholar
  7. Da Cruz H, Murcia regional working group (2003) Programme for the integrated management of the Mar Menor coastline and its area of influence. Feasibility study. UNEP, Region of Murcia and Mediterranean action plan, 136 pp.
  8. De León AR, Guerrero J, Farazo F (1982) Evolution of the pollution of the coastal lagoon of Mar Menor. Proc. VIes Journées Étud Pollutions, Cannes, C.I.E.S.M., pp 355–358Google Scholar
  9. DIN-NORMEN (1984) DIN 38414–S4 Determination of leachability by water (S4). German standard methods for examination of water, wastewater and sludge. Sludge and Sediments (group S)Google Scholar
  10. Duran JJ, García de Domingo A, López-Geta JA (2003) Hydrogeological characterization of the Spanish wetlands included in the Ramsar Convetion. 1:2.500.000 Map. Geological Survey of SpainGoogle Scholar
  11. Fanfani L, Zuddas P, Chessa A (1997) Heavy metals speciation analysis as a tool for studying mine tailings weathering. J Geochem Explor 58:241–248CrossRefGoogle Scholar
  12. Font I (1983) Atlas climático de España y Portugal. Instituto Nacional de Meteorología, Madrid, pp 296Google Scholar
  13. Gagny C, Marconnet B (1994) Les minéralisations Pb–Zn du district de Carthagène (Espagne): un nouveau modèle structural. Application à la prospection. Chon Rech Min 516:25–38Google Scholar
  14. García C (2004) Impacto y riesgo ambiental de los residuos minero-metalúrgicos de la Sierra de Cartagena–La Unión (Murcia-España). Ph.D. thesis, Technical University of Cartagena, Spain, pp 424Google Scholar
  15. García-Tortosa FJ, López Garrido AC, Sanz de Galdeano C (2000) Las unidades alpujárrides y maláguides entre Cabo Cope y Cabo de Palos (Murcia, España). Geogaceta 28:67–70Google Scholar
  16. Gray NF (1996) Field assessment of acid mine drainage contamination in surface and ground water. Environ Geol 27:358–361CrossRefGoogle Scholar
  17. Guardiola R (1927) Estudio metalogénico de la Sierra de Cartagena. Inst Geol España Mem 53:564Google Scholar
  18. Hammarstrom JM, Seal RR II, Meier AL, Kornfeld JM (2005) Secondary sulfate minerals associated with acid drainage in the eastern US: recycling of metals and acidity in surficial environments. Chem Geol 215:407–431CrossRefGoogle Scholar
  19. Hernández J, García G, Conesa H, Faz Cano (2004) Polluted soils by mining and industrial activities in the “Campo de Cartagena” county (Murcia). In: Faz A, Ortíz R, García G (eds) Fourth international conference on land degradation. Excursion Guidebook, pp 67–83Google Scholar
  20. IGME-MOPTMA (1996) Recuperación de los usos de la Bahía de Portmán. Estudio geológico e hidrogeológico de la Sierra Minera (Murcia), pp 306Google Scholar
  21. Kager PCA (1980) Mineralogical investigation on sulfides, Fe–Mn–Zn–Mg–Ca–carbonates, greenalite and associated minerals in the Pb–Zn deposits in the Sierra de Cartagena, Province of Murcia, SE Spain. Ph.D. thesis, University of Amsterdam, GUA paper of Geology series 1(12):230Google Scholar
  22. Lee CH, Lee HK, Lee JC (2001) Hydrogeochemistry of mine, surface and groundwater from Sanggok mine creek in the upper Chungju, Republic of Korea. Environ Geol 40(4–5):483–494Google Scholar
  23. Manteca JI, Ovejero G (1992) Los yacimientos Zn, Pb, Ag–Fe del distrito minero de La Unión–Cartagena, Bética Oriental. In: García Guinea J, Martínez Frías J (eds) Recursos minerales de España, Madrid. CSIC, pp 1085–1101Google Scholar
  24. Marguí E, Salvadó V, Queralt I, Hidalgo M (2004) Comparison of three-stage sequential extraction and toxicity characteristic leaching tests to evaluate metal mobility in mining wastes. Anal Chim Acta 524:151–159CrossRefGoogle Scholar
  25. Oén IS, Fernández JC, Manteca JI (1975) The lead–zinc and associated ores of La Unión–Sierra de Cartagena, Spain. Econ Geol 70:1259–1278CrossRefGoogle Scholar
  26. Ovejero G, Jacquin JP, Servajean G (1976) Les minéralisations et leur contexte géologique dans la Sierra de Cartagena (Sud-Est de L’Espagne). Bull Soc Géol France (7), t. XVIII(3):613–633Google Scholar
  27. Pavillon MJ (1969) Les minéralisations plombo-cinzifères de Carthagène (Cordillères Bétiques, Espagne). Un exemple d’héritages successifs en métallogénie. Mineral Deposita 4:368–385Google Scholar
  28. Rodríguez R, Candela L (2004) Changes in groundwater chemistry due to metallurgical activities in an alluvial aquifer in the Moa area (Cuba). Environ Geol 46(1):71–82Google Scholar
  29. Rösner U (1998) Effects of historical mining activities on surface water and groundwater—an example from northwest Arizona. Environ Geol 33(4):224–230CrossRefGoogle Scholar
  30. Sánchez-Gómez P, Guerra-Montes J, Coy-Gómez E, Hernández-González A, Fernández-Jiménez S, Carrillo-López AF (1998) Flora de Murcia. Claves de identificación e iconografía de plantas vasculares. Murcia, p 440Google Scholar
  31. Sanchíz C, García AM, Pastor A (1999) Heavy metals contents in soft-bottom marine macrophytes and sediments along the Mediterranean coast of Spain. Mar Ecol 21(1):1–16CrossRefGoogle Scholar
  32. Sanz de Galdeano C (1990) Geologic evolution of the Betic Cordilleras in Western Mediterranean, Miocene to the present. Tectonophysics 172:107–119CrossRefGoogle Scholar
  33. Simonneau J (1973) Mar Menor. Evolution sedimentologique et geoquimique recent du remplissage. Ph.D. thesis, University Paul Sabatier, France, p 172Google Scholar
  34. Vilar JB, Egea Bruno PM, Fernández-Gutierrez JC (1991) La minería murciana contemporánea (1930–1985). Inst Tecn Geomin España, Madrid, pp 256Google Scholar
  35. Younger PL (1999) Pronóstico del ascenso del nivel freático en minas subterráneas y sus consecuencias medio-ambientales. Bol Geol Min 110(4):407–422Google Scholar
  36. Younger PL (2001) Contaminación de las aguas subterráneas por productos de oxidación de sulfuros en una mina abandonada encajada en calizas masivas. In: Medina A, Carrera J, Vives L (eds) Proceedings of the conference: Las caras del agua subterránea. September 2001, Barcelona, Spain, vol. 1, pp 3–8Google Scholar
  37. Younger PL, Wolkersdorfer C (2004) Mining impacts on fresh water environment: technical and managerial guidelines for catchment scale management. Mine Water Environ 23:S2–S80CrossRefGoogle Scholar
  38. Younger PL, Banwart SA, Hedin RS (2002) Mine water. Hydrology, pollution and remediation. Kluwer Academic Publisher, London, pp 442Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • V. M. Robles-Arenas
    • 1
    Email author
  • R. Rodríguez
    • 2
  • C. García
    • 3
  • J. I. Manteca
    • 3
  • L. Candela
    • 1
  1. 1.Department of Geotechnical Engineering and Geosciences, School of Civil EngineeringTechnical University of Catalonia (UPC)BarcelonaSpain
  2. 2.Department of ChemistryUniversity of Girona (UdG)GironaSpain
  3. 3.Department of Mining Engineering, Geology and CartographyTechnical University of Cartagena (UPCT)CartagenaSpain

Personalised recommendations