Advertisement

Environmental Geology

, Volume 50, Issue 7, pp 941–961 | Cite as

A GIS-based automated procedure for landslide susceptibility mapping by the Conditional Analysis method: the Baganza valley case study (Italian Northern Apennines)

  • Aldo Clerici
  • Susanna Perego
  • Claudio Tellini
  • Paolo Vescovi
Original Article

Abstract

Among the many GIS based multivariate statistical methods for landslide susceptibility zonation, the so called “Conditional Analysis method” holds a special place for its conceptual simplicity. In fact, in this method landslide susceptibility is simply expressed as landslide density in correspondence with different combinations of instability-factor classes. To overcome the operational complexity connected to the long, tedious and error prone sequence of commands required by the procedure, a shell script mainly based on the GRASS GIS was created. The script, starting from a landslide inventory map and a number of factor maps, automatically carries out the whole procedure resulting in the construction of a map with five landslide susceptibility classes. A validation procedure allows to assess the reliability of the resulting model, while the simple mean deviation of the density values in the factor class combinations, helps to evaluate the goodness of landslide density distribution. The procedure was applied to a relatively small basin (167 km2) in the Italian Northern Apennines considering three landslide types, namely rotational slides, flows and complex landslides, for a total of 1,137 landslides, and five factors, namely lithology, slope angle and aspect, elevation and slope/bedding relations. The analysis of the resulting 31 different models obtained combining the five factors, confirms the role of lithology, slope angle and slope/bedding relations in influencing slope stability.

Keywords

Landslide susceptibility map Geographic information systems (GIS) GRASS Shell script Northern Italian Apennines 

Notes

Acknowledgements

In this paper, A. Clerici was responsible for the procedure for landslide susceptibility zonation, S. Perego for geomorphological and climatic characteristics, C. Tellini for the landslide survey and mapping, P. Vescovi for the geological and lithological aspects. This study was supported partly by funds of the Parma University research project FIL 2004 “Evoluzione geomorfologica tardo-quaternaria: casi di studio nelle Alpi Marittime e nell’Appennino settentrionale” (Coordinator S. Perego), and partly by the COFIN 2002, National Research Program: “Evoluzione geomorfologia dei versanti e cambiamenti climatici: analisi di fenomeni franosi e ricostruzioni paleoclimatiche” (National coordinator M. Soldati); Local Research Program: “Cambiamenti climatici tardo-quaternari e instabilità dei versanti nell’Appennino settentrionale” (Local coordinator C. Tellini). Thanks to M. Gallarotti and A. Ruffini for help in data acquisition and editing, D. Peis for his kind assistance in solving computer problems, E. Masini for drawing some of the figures and P. Sears for valuable aid in translation. We are grateful to M. Soldati for detailed and helpful comments and suggestions.

References

  1. Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Env 58:21–44CrossRefGoogle Scholar
  2. Almagià R (1907) Studi geografici sulle frane in Italia. Mem Soc Geogr It 13:1–342Google Scholar
  3. Andreozzi M, Zanzucchi G (1999) Carta Geologica della Val Baganza. Scala 1: 50.000. STEP, ParmaGoogle Scholar
  4. Atkinson PM, Massari R (1998) Generalised linear modelling of susceptibility to landsliding in the central Apennines, Italy. Comput Geosci 24:373–385CrossRefGoogle Scholar
  5. Ayalew L, Yamagishi H (2004) Slope failure in the Blue Nile basin, as seen from landscape evolution perspective. Geomorphology 57:95–116CrossRefGoogle Scholar
  6. Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65:15–31CrossRefGoogle Scholar
  7. Ayalew L, Yamagishi H, Ugawa N (2004) Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides 1:73–81CrossRefGoogle Scholar
  8. Bednárik M, Clerici A, Tellini C, Vescovi P (2005) Using GIS GRASS in evaluation of Landslide Susceptibility in Termina valley in the Northern Apennines (Italy). In: Proceedings of the 15th conference engineering geology, Erlangen, Germany, 6–9 April 2005Google Scholar
  9. Bernini M, Vescovi P, Zanzucchi G (1997) Schema Strutturale dell’Appennino nord-occidentale. L’Ateneo Parmense-Acta Naturalia 33:43–54Google Scholar
  10. Bertolini G, Pellegrini M (2001) The landslides of the Emilia Apennines (northern Italy) with reference to those which resumed activity in the 1994–1999 period and required Civil Protection interventions. Quad Geol Appl 8:27–74Google Scholar
  11. Binaghi E, Luzi L, Madella P, Pergalani F, Rampini A (1998) Slope Instability Zonation: a comparison between Certainty Factor and Fuzzy Dempster–Shafer approaches. Nat Hazards 17:77–97CrossRefGoogle Scholar
  12. Boccia A (1804) Viaggio ai monti di Parma. Palatina, ParmaGoogle Scholar
  13. Bonham-Carter GF (1994) Geographic information systems for geoscientists: modelling with GIS. Computer Methods in the Geosciences 13, PergamonGoogle Scholar
  14. Brabb EE (1984) Innovative approaches to landslide hazard mapping. In: Proceedings of the IV international symposium on landslides, Toronto, vol. 1, pp 307–324Google Scholar
  15. Brabb EE, Pampeyan EH, Bonilla MG (1972) Landslide susceptibility in San Mateo County, California. Misc Field Studies Map MF360 (scale 1:52,500). U.S. Geological Survey, Reston, VaGoogle Scholar
  16. Çevik E, Topal T (2003) GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environ Geol 44:949–962CrossRefGoogle Scholar
  17. Carrara A, Cardinali M, Detti R, Guzzetti F, Pasqui V, Reichenbach P (1991) GIS techniques and statistical models in evaluating landslide hazard. Earth Surf Process Landforms 16:427–445Google Scholar
  18. Carrara A, Cardinali M, Guzzetti F (1992) Uncertainty in assessing landslide hazard and risk. ITC J 2:172–183Google Scholar
  19. Carrara A, Cardinali M, Guzzetti F, Reichenbach P (1995a) GIS technology in mapping landslide hazard. In: Carrara A,Guzzetti F (eds) Geographical information systems in assessing natural hazards. Kluwer, Dordrecht, pp 135–175Google Scholar
  20. Carrara A, Cardinali M, Guzzetti F, Reichenbach P (1995b) GIS-based techniques for mapping landslide hazard. (http://www.deis158.deis.unibo.it/gis/chapt0.htm)
  21. Cerrina Feroni A,Vescovi P (2005) Foglio 217 “Neviano degli Arduini” della Nuova Carta Geologica d’Italia 1: 50.000. Servizio Geologico d’Italia, RomaGoogle Scholar
  22. Cerrina Feroni A, Elter P, Plesi G, Rau A, Rio D, Vescovi P, Zanzucchi G (1990) Carta Geologica dell’Appennino emiliano-romagnolo 1:50.000. Foglio no 217 “Neviano degli Arduini”. Selca, FirenzeGoogle Scholar
  23. Chung CF, Fabbri AG (1999) Probabilistic prediction models for landslide hazard mapping. Photogrammetric Eng Remote Sensing 65:1389–1399Google Scholar
  24. Chung CF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30:451–472CrossRefGoogle Scholar
  25. Chung CF, Fabbri AG, van Westen CJ (1995) Multivariate regression analysis for landslide hazard zonation. In: Carrara A, Guzzetti F (eds) Geographical information systems in assessing natural hazards. Kluwer, Dordrecht, pp 107–133Google Scholar
  26. Chung CF, Kojma H, Fabbri AG (2002) Stability analysis of prediction models for landslide hazard mapping. In: Allison RJ (ed) Applied geomorphology: theory and practice, pp 3–19Google Scholar
  27. Clerici A (2002) A GRASS GIS based shell script for landslide susceptibility zonation. In: Proceedings of the open source free software GIS-GRASS users conference. Trento, Italy 11–13 September 2002 (http://www.ing.unitn.it/∼grass/conferences/GRASS2002/proceedings/proceedings/pdfs/Clerici_Aldo.pdf).
  28. Clerici A, Cuccuru G, Trambaglio L, Lina F (1993) La realizzazione di una carta della stabilità dei versanti mediante l’uso di un Sistema d’Informazione Geografica. Geologia Tecnica Ambientale 4/93:25–40Google Scholar
  29. Clerici A, Perego S, Tellini C, Vescovi P (2002) A procedure for landslide susceptibility zonation by the conditional analysis method. Geomorphology 48:349–364CrossRefGoogle Scholar
  30. Cooper M (2005) Advanced bash-scripting guide. An in-depth exploration of the art of shell scripting (Revision 3.6) (http://www.en.tldp.org/LDP/abs/html/)
  31. Cruden DM, Hu XQ (1996) Hazardous modes of rock slope movement in the Canadian Rockies. Environ Eng Geosci 2:507–516Google Scholar
  32. Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation. Transportation research board special report 247, pp 36–75Google Scholar
  33. Dai FC, Lee CF (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42:213–228CrossRefGoogle Scholar
  34. Dai FC, Lee CF (2003) A spatiotemporal probabilistic modeling of storm-induced shallow landsliding using aerial photographs and logistic regression. Earth Surf Process Landforms 28:527–545CrossRefGoogle Scholar
  35. Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and menagement: an overview. Eng Geol 64:65–87CrossRefGoogle Scholar
  36. Dall’Olio E (1975) Itinerari turistici della Provincia di Parma. Artegrafica Silva, ParmaGoogle Scholar
  37. D’Amato Avanzi G, Giannecchini R, Puccinelli A (2004) The influence of the geological and geomorphological settings on shallow landslides. An example in a temperate climate environment: the June 19, 1996 event in northwestern Tuscany (Italy). Eng Geol 73:215–228CrossRefGoogle Scholar
  38. Di Dio G, Lasagna S, Preti D, Sagne M (1997) Carta Geologica dei depositi quaternari della Provincia di Parma. Il Quaternario 10:445–452Google Scholar
  39. Donati L, Turrini MC (2002) An objective method to rank the importance of the factors predisposing to landslides with the GIS methodology: application to an area of the Apennines (Valnerina; Perugia, Italy). Eng Geol 63:277–289CrossRefGoogle Scholar
  40. Elter P, Grasso M, Parotto M, Vezzani L (2003) Structural setting of the Apennine-Maghrebian thrust belt. Episodes 26:205–211Google Scholar
  41. Ercanoglu M, Gokceoglu C (2004) Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey). Eng Geol 75:229–250CrossRefGoogle Scholar
  42. Ermini L, Catani F, Casagli N (2005) Artificial Neural Network applied to landslide susceptibility assessment. Geomorphology 66:327–343CrossRefGoogle Scholar
  43. Fernandes NF, Guimarães RF, Gomes RAT, Vieira BC, Montgomery DR, Greenberg H (2004) Topographic controls of landslides in Rio de Janeiro: field evidence and modelling. Catena 55:163–181CrossRefGoogle Scholar
  44. Fernandez T, Irigaray C, El Hamdouni R, Chacón J (2003) Methodology for Landslide Susceptibility Mapping by means of a GIS. Application to the Contraviesa Area (Granada, Spain). Nat Hazards 30:297–308CrossRefGoogle Scholar
  45. Free software foundation (2002) Bash reference manual (Edition 2.5b) (http://www.gnu.org/software/bash/manual/bashref.html)
  46. Free Software Foundation (2003) The GNU Awk User’s Guide (Edition 3)(http://www.gnu.org/software/gawk/manual/gawk.html)
  47. GRASS Development Team (1999) GRASS: geographic resources analysis support system (http://www.grass.itc.it)
  48. Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216CrossRefGoogle Scholar
  49. Jakob M (2000) The impacts of logging on landslide activity at Clayoquot Sound, British Columbia. Catena 38:279–300CrossRefGoogle Scholar
  50. Ko Ko C, Flentje P, Chowdhury R (2004) Landslides qualitative hazard and risk assessment method and its reliability. Bull Eng Geol Env 63:149–165CrossRefGoogle Scholar
  51. Lan HX, Zhou CH, Wang LJ, Zhang HY, Li RH (2004) Landslide hazard spatial analysis and prediction using GIS in the Xiaojiang watershed, Yunnan, China. Eng Geol 76:109–128CrossRefGoogle Scholar
  52. Larsen MC, Torres-Sánchez AJ (1998) The frequency and distribution of recent landslides in three montane tropical regions of Puerto Rico. Geomorphology 24:309–331CrossRefGoogle Scholar
  53. Lee S (2004) Application of likelihood ratio and logistic regression models to landslide susceptibility mapping using GIS. Environ Manage 34:223–232CrossRefPubMedGoogle Scholar
  54. Lee S, Choi J (2004) Landslide susceptibility mapping using GIS and the weight-of-evidence model. Int J Geogr Inf Sci 18:789–814CrossRefGoogle Scholar
  55. Lee S, Chwae U, Min K (2002) Landslide susceptibility mapping by correlation between topography and geological structure: the Janghung area, Korea. Geomorphology 46:149–162CrossRefGoogle Scholar
  56. Lee S, Choi J, Woo I (2004) The effect of spatial resolution on the accuracy of landslide susceptibility mapping: a case study in Boun, Korea. Geosci J 8:51–60CrossRefGoogle Scholar
  57. Lin ML, Tung CC (2003) A GIS-based potential analysis of the landslides induced by the Chi-Chi earthquake. Eng Geol 71:63–77CrossRefGoogle Scholar
  58. Lineback Gritzner M, Marcus WA, Aspinall R, Custer SG (2001) Assessing landslide potential using GIS, soil wetness modeling and topographic attributes, Payette River, Idaho. Geomorphology 37:149–165CrossRefGoogle Scholar
  59. Lopez HJ, Zink JA (1991) GIS-assisted modelling of soil-induced mass movement hazards: a case study of the upper Coello river basin, Tolima, Colombia. ITC J 4:202–220Google Scholar
  60. Luzi L, Pergalani F (1999) Slope instability in static and dynamic conditions for urban planning: the ‘Oltre Po Pavese’ case history (Regione Lombardia-Italy). Nat Hazards 20:57–82CrossRefGoogle Scholar
  61. Menéndez Duarte R, Marqínez J (2002) The influence of environmental and lithologic factors on rockfall at a regional scale: evaluation using GIS. Geomorphology 43:117–136CrossRefGoogle Scholar
  62. Moreiras SM (2005) Landslide susceptibility zonation in the Rio Mendoza Valley, Argentina. Geomorphology 66:345–357CrossRefGoogle Scholar
  63. Nagarajan R, Roy A, Vinod Kumar R, Mukherjee A, Khire MV (2000) Landslide hazard susceptibility mapping based on terrain and climatic factors for tropical monsoon regions. Bull Eng Geol Env 58:275–287CrossRefGoogle Scholar
  64. Neteler M, Mitasova H (2004) Open source GIS: a GRASS GIS approach, 2nd edn. Kluwer, DordrechtGoogle Scholar
  65. Ohlmacher GC, Davis JC (2003) Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Eng Geol 69:331–343CrossRefGoogle Scholar
  66. Perotto-Baldiviezo HL, Thurow TL, Smith CT, Fisher RF, Wu XB (2004) GIS-based spatial analysis and modeling for landslide hazard assessment in steeplands, southern Honduras. Agric Ecosys Environ 103:165–176CrossRefGoogle Scholar
  67. Pinna M, Vittorini S (1985) Contributo alla determinazione dei regimi pluviometrici in Italia. In: Contributi di climatologia. Mem Soc Geogr It 39:147–167Google Scholar
  68. Pizzini K (1998) sed, a stream editor (version 3.02). Free Software Foundation, Boston, MA (http://www.gnu.org/software/sed/manual/html_chapter/sed_toc.html)
  69. Raghavan V, Masumoto S, Kajiyama A, Nemoto T, Fujita T (2004) Landslide hazard zonation using the GRASS GIS: a case study in the Ojiya District, Niigata Prefecture, Japan Int Symposium on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences. Hanoi, Vietnam, September 16–18, 2004 (http://www.gisws.media.osaka-cu.ac.jp/gisideas04/viewpaper.php?id=88)
  70. Remondo J, Gonzales A, Díaz De Terán JR, Cendrero A, Fabbri A, Chung CF (2003) Validation of landslide susceptibility maps; examples and applications from a case study in Northern Spain. Nat Hazards 30:437–449CrossRefGoogle Scholar
  71. Santacana N, Corominas J (2002) Example of validation of landslide susceptibility maps. In: Rybář J, Stemberk J, Wagner P (eds) Landslides. Sweets& Zetlinger, Lisse, pp 305–310Google Scholar
  72. Santacana N, Baeza B, Corominas J, De Paz A, Marturiá J (2003) A GIS-based multivariate statistical analysis for shallow landslide susceptibility mapping in La Pobla de Lillet Area (Eastern Pyrenees, Spain). Nat Hazards 30:281–295CrossRefGoogle Scholar
  73. Shrestha DP, Zink JA, Van Ranst E (2004) Modelling land degradation in the Nepalese Himalaya. Catena 57:135–156CrossRefGoogle Scholar
  74. Soeters R, van Westen CJ (1996) Slope instability recognition, analysis, and zonation. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation. Transportation Research Board Special Report 247, pp 129–177Google Scholar
  75. Süzen ML, Doyuran V (2004) Data driven bivariate landslide susceptibility assessment using geographical information systems: a method and application to Asarsuyu catchment, Turkey. Eng Geol 71:303–321CrossRefGoogle Scholar
  76. Tangestani MH (2004) Landslide susceptibility mapping using the fuzzy gamma approach in a GIS, Kakan catchment area, southwest Iran. Aust J Earth Sci 51:439–450CrossRefGoogle Scholar
  77. Tellini C, Chelli A (2003) Ancient and recent landslide occurrences in the Emilia Apennines (Northern Apennines, Italy). In: Proceedings of the workshop on geomorphological sensitivity and system response, Camerino-Modena Apennines (Italy), July 4–9 2003, pp 105–114Google Scholar
  78. Vescovi P (1998) Le Unità Subliguri dell’alta Val Parma (Provincia di Parma). Atti Tic Sc Terra 40:215–231Google Scholar
  79. Vescovi P (2002) Foglio 216 “Borgo Val di Taro” della Nuova Carta Geologica d’Italia 1:50.000. Servizio Geologico d’Italia, RomaGoogle Scholar
  80. Vescovi P, Fornaciari E, Rio D, Valloni R (1999) The basal complex stratigraphy of the Helminthoid Monte Cassio Flysch: a key to Eoalpine tectonics of the Northern Apennines. Rivista Italiana di Paleontologia e Stratigrafia 105:101–128Google Scholar
  81. van Westen CJ, Rengers N, Soeters R (2003) Use of geomorphological information in indirect landslide susceptibility assessment. Nat Hazards 30:399–419CrossRefGoogle Scholar
  82. Zêzere JL, Ferreira AB, Rodrigues ML (1999) The role of conditioning and triggering factors in the occurrence of landslides: a case study in the area north of Lisbon (Portugal). Geomorphology 30:133–146CrossRefGoogle Scholar
  83. Zhou CH, Lee CF, Li J, Xu ZW (2002) On the spatial relationship between landslides and causative factors on Lantau Island, Hong Kong. Geomorphology 43:197–207CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Aldo Clerici
    • 1
  • Susanna Perego
    • 1
  • Claudio Tellini
    • 1
  • Paolo Vescovi
    • 1
  1. 1.Dipartimento di Scienze della TerraUniversitá degli Studi di ParmaParmaItaly

Personalised recommendations