Environmental Geology

, Volume 48, Issue 8, pp 1002–1013 | Cite as

Rock cut stability assessment in mountainous regions

  • Gorka Uribe-Etxebarria
  • Tomás Morales
  • Jesús A. Uriarte
  • Valentín Ibarra
Original Article


Ensuring stability of rock slopes is an essential requirement in the progress of our societies today. Rock determined to be loose or with potential for failure must be removed or restrained in some way. In our work, after doing an inventory of the instabilities that occurred in the last 5 years in the Basque Country, we analyse the different factors, in slope stability. The potential for failure is evaluated for different classes of rock mass, characterized previously by their geomechanical properties. The characterization of potential risk of each one is undertaken by considering 10 parameters that define the nature of mass rock, relative orientation and morphological features of the slope (interaction rock massif-slope) and infrastructure features (interaction rock massif-slope-infrastructure). Each of these parameters is evaluated separately and a Risk Factor (RF) is determined. The RF reaches a maximum value of 10,000 and allows to differentiate four categories of slopes; each category has its own priority. Rock mass characteristics also determine the potential damage from instability and the associated correction measures. The systematic evaluation of instabilities must allow establishing a priority in the correction measures and thus optimise the available economic resources.


Rock cut stability Linear infrastructures Risk Factor Mountainous regions 



This work was supported by The University of the Basque Country. Project 1/UPV 00001.310-E-13915/2001: Caracterización de la inestabilidad de taludes en macizos interestratificados del País Vasco: aspectos geomecánicos, interacción precipitación-inestabilidad y análisis de riesgos.


  1. Badger TC, Lowell S (1992) Rockfall control Washington State. In: Rockfall Prediction and Control and Landslide Case Histories, Transp. Research Record, National Research Council, Washington, 1342:14–19Google Scholar
  2. Bell DH, Pettinga JR (1988) Bedding-controlled landslides in New Zealand soft rock terrain. In: Proceedings of the fifth international symposium on landslides, Lausanne, pp 77–83Google Scholar
  3. Bieniawski ZT (1989) Engineering rock mass classifications. Wiley, NY, p 251Google Scholar
  4. Boillot G, Capdevilla R (1977) The Pyrenees: subduction and collision? Earth Planet Sci Lett 35:151–160CrossRefGoogle Scholar
  5. Brawner CO, Wyllie DC (1975) Rock slope stability on railway projects. In: Proceedings of the American Railway Engineering Association Regional Meeting, Vancouver, BC; American Railway Engineering Association, Washington, DCGoogle Scholar
  6. Deere DU (1964) Technical description of rock cores for engineering purposes. Rock Mech Eng Geol 1(1):16–22Google Scholar
  7. Feuille P, Rat P (1971) Structures et páleogéographie pyréneo-cantabrique. Hist St du golfe de Gascogne Edn Technip 2:V-1-1–V-1-48Google Scholar
  8. Franklin JA, Senior SA (1997) Outline of RHRON, the Ontario rockfall hazard rating system. In: Proceedings of the international symposium on engineering geology and environment, Athens, Greece, pp 647–656Google Scholar
  9. García Mondejar J, Hines FM, Pujalte V, Reading HG (1985) Sedimentation and tectonics in the western Basque–Cantabrian area (northern Spain) during Cretaceous and Tertiary times. In: Mila MD, Rosell J (eds) Sixth European Regional Meeting. Excursion guidebook, pp 307–392Google Scholar
  10. Goodman RE (1989) Introduction to rock mechanics. Wiley, NYGoogle Scholar
  11. Haramy KY, De Marco MJ (1985) Use of the Schmidt hammer for rock and coal testing. In: Proceedings of the 26th U.S., symposium on Rock Mech. Rapid City, pp 549–555Google Scholar
  12. Hoek E (1998) Reliability of Hoek–Brown estimates of rock mass properties and their impact on design. Int J Rock Mech Min Sci 35(1):63–68CrossRefGoogle Scholar
  13. Hoek E (2000) Practical rock engineering. Course notes. Evert Hoek Consulting Engineer Inc., CanadaGoogle Scholar
  14. Hungr O, Evans SG (1989) Engineering aspects of rockfall hazard in Canada. In: Geological Survey of Canada, Open File 2061Google Scholar
  15. ISRM (international Society for Rock Mechanics) (1979) Suggested methods for determination of the slake durability index. Int J Rock Mech Min Sci Geomech Abstr 16:154–156Google Scholar
  16. Kolaiti E, Papadopoulus Z (1993) Evaluation of Schmidt rebound hammer testing: a critical approach. Bull Int Assoc Eng Geol (IAEG) 48:69–76CrossRefGoogle Scholar
  17. Marinos P, Hoek E (2001) Estimating the geotechnical properties of heterogeneous rock masses such a flysch. Bull Eng Geol Env 60(2):85–92CrossRefGoogle Scholar
  18. Martinez-Torres LM (1989) El manto de los mármoles (Pirineo Occidental): Geología estructural y evolución geodinámica. PhD Thesis, University of The Basque CountryGoogle Scholar
  19. Miller M (2003) Development and implementation of the Idaho Highway Slope Instability and Management System (HISIMS). National Institute for Advanced Transportation Technology (NIATT), University of IdahoGoogle Scholar
  20. Moon V, Russell G, Stewart M (2001) The value of rock mass classification systems for weak rock masses: a case example from Huntly, New Zealand. Eng Geol 61:53–67CrossRefGoogle Scholar
  21. Morales T, Uribe-Etxebarria G, Uriarte JA, Fernandez de Valderrama I (2004) Geomechanical characterisation of rock masses in Alpine regions: the Basque Arc (Basque–Cantabrian basin, Northern Spain). Eng Geol 71:343–362CrossRefGoogle Scholar
  22. Morgenstern NR (1997) Toward landslide risk assessment in practice. In: Cruden DY, Fell R (eds) Landslide risk assessment. A. A. Balkema, Rotterdam, Brookfield, pp 15–24Google Scholar
  23. Pierson LA, Van Vickle (1993) Rockfall hazard rating system-participants manual. In: Federal Highway Administration Report FH-WA-SA-93-057, FHWA, Washington, DCGoogle Scholar
  24. Pierson LA, Davis SA, Van Vickle R (1990) Rockfall hazard rating system implement manual. In: Federal Highway Administration (FHWA) Report FHWA-OREG-90-01. FHWA, U.S. Department of TransportationGoogle Scholar
  25. Ramirez Del Pozo J (1973) Síntesis geológica de la provincia de Álava. Obra Cultural de la Caja de Ahorros de la Ciudad de VitoriaGoogle Scholar
  26. Read SA, Millar PJ (1990) Characterisation and classification of New Zealand Tertiary age sedimentary soft rocks. Road Research Unit, Transit New Zealand, Bull 84:1–25Google Scholar
  27. Romana M (1992) Métodos de corrección de taludes según la clasificación geomecánica SMR. In: III Simposio Nacional sobre Taludes y Laderas Inestables, La Coruña, pp 629–650Google Scholar
  28. Wyllie D (1987) Rock slope inventory/maintenance programs. In: FHWA Rockfall Mitigation Seminar, 13th Northwest Geotechnical Workshop, Portland, OregonGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Gorka Uribe-Etxebarria
    • 1
  • Tomás Morales
    • 1
  • Jesús A. Uriarte
    • 1
  • Valentín Ibarra
    • 2
  1. 1.Department of Geodynamics, Science and Technology FacultyUniversity of the Basque Country, B°Sarriena s/nLeioaSpain
  2. 2.TEAM SLParque Tecnológico, Edif. 207-BZamudioSpain

Personalised recommendations