Advertisement

Environmental Geology

, Volume 48, Issue 3, pp 360–369 | Cite as

Spatial distribution, morphometry and activity of La Puebla de Alfindén sinkhole field in the Ebro river valley (NE Spain): applied aspects for hazard zonation

  • F. Gutiérrez-Santolalla
  • M. Gutiérrez-Elorza
  • C. Marín
  • G. Desir
  • C. Maldonado
Original Article

Abstract

A highly active collapse sinkhole field in the evaporitic mantled karst of the Ebro river valley is studied (NE Spain). The subsidence is controlled by a NW-SE trending joint system and accelerated by the discharge of waste water from a nearby industrial state. The morphometry, spatial distribution and temporal evolution of the sinkholes have been analysed. The volume of the sinkholes yields a minimum estimate of average lowering of the surface by collapse subsidence of 46 cm. The clustering of the sinkholes and the tendency to form elongated uvalas and linear belts, in a NW–SE direction have a predictive utility and allow the establishment of criteria for a hazard zonation. With the precipitation record supplied by a pluviograph and periodic cartographic and photographic surveys the influence of heavy rainfall events on the triggering of collapses has been studied.

Keywords

Evaporite karst Collapse sinkhole Spatial distribution Hazard zonation Spain 

Notes

Acknowledgements

This research has been financially supported by the ROSES project (ENV4-CT97-0603) of the European Community. The authors would like to thank the geologist and speleologist Fernando Lorén Blasco for his help in the exploration of the endokarst.

References

  1. Arlegui L (1996) Diaclasas, fallas y campos de esfuerzo en el sector central de la Cuenca del Ebro. PhD Thesis. University of Zaragoza, 308 ppGoogle Scholar
  2. Arlegui L, Soriano MA (1998) Characterizing lineaments from satellite images and field studies in the central Ebro basin (NE Spain). Int J Remote Sensing 19(16):3169–3185CrossRefGoogle Scholar
  3. Beck BF (1991) On calculating the risk of sinkhole collapse. In: Kastning EH, Kastning KM (eds) Appalachian karst. Proceedings of the appalachian karst symposium. National Speleological Society, Radford, Virginia, pp 231–236Google Scholar
  4. Benito G (1989) Geomorfología de la Cuenca Baja del Río Gállego. PhD Thesis. Univeristy of Zaragoza, 764 ppGoogle Scholar
  5. Benito G, Gutiérrez M (1988) Karst in gypsum and its environmental impact on the middle Ebro Basin, Spain. Environ Geol Water Sci 12(2):107–111Google Scholar
  6. Benito G, Pérez del Campo P, Gutiérrez-Elorza M, Sancho C (1995) Natural and human-induced sinkholes in gypsum terrain and associated environmental problems in NE Spain. Environ Geol 25:156–164CrossRefGoogle Scholar
  7. Brook GA, Allison TL (1986) Fracture mapping and ground subsidence susceptibility modeling in covered karst terrain: the example of Dougherty Country, Georgia. In: Land Subsidence, vol 151. IAHS Publication pp 595–605Google Scholar
  8. Clark PJ, Evans FC (1954) Distance to nearest neighbour as measure of spatial relationships in populations. Ecology 35:445–453Google Scholar
  9. Drake JJ, Ford DC (1972) The analysis of growth patterns of two-generation populations: the examples of karst sinkholes. Can Geograph 16:381–384Google Scholar
  10. Gutiérrez F (1998) Subsidencia por colapso en un karst aluvial. Análisis de estabilidad. In: Investigaciones recientes de la Geomorfología española. Barcelona pp 47–58Google Scholar
  11. Gutiérrez F, Arauzo T (1997) Subsidencia kárstica sinsedimentaria en un sistema aluvial efímero: El Barranco de Torrecilla (Depresión del Ebro, Zaragoza). Cuadernos de Geología Ibérica 22:349–372Google Scholar
  12. Gutiérrez M, Gutiérrez F (1998) Geomorphology of the Tertiary gypsum formations in the Ebro Depression (Spain). Geoderma 87:1–29CrossRefGoogle Scholar
  13. Gutiérrez F, Arauzo T, Desir G (1994) Deslizamientos en el escarpe en yesos de Alfajarín (Zaragoza). Cuaternario y Geomorfología 8(1–2):57–68Google Scholar
  14. Gutiérrez F, Ortí F, Gutiérrez M, Pérez-González A, Benito G, Gracia J, Durán JJ (2001) The stratigraphical record and activity of evaporite dissolution subsidence in spain. Carbonates Evaporites 16(1):46–70Google Scholar
  15. Gutiérrez-Santolalla F, Gutiérrez-Elorza M, Marín C, Maldonado C, Younger PL (2005) Subsidence hazard avoidance based on geomorphological mapping. The case study of the Ebro River valley mantled karst (NE Spain). Environ Geol (in press)Google Scholar
  16. Hyatt J, Jacobs P (1996) Distribution and morphology of sinkholes triggered by flooding following tropical storm alberto at Albany, Georgia, USA. Geomorphology 17:305–316CrossRefGoogle Scholar
  17. Hyatt J, Wilkes H, Jacobs P (1999) Spatial relationship between new and old sinkholes in covered karst, Albany, Georgia, USA. In: Hydrogeology and engineering geology of sinkholes and Karst. Proceedings of the 7th multidisciplinary conference on sinkholes and the engineering and environmental impacts of Karst, Harrisburg, Pennsylvania pp 37–44Google Scholar
  18. Kemmerly PR (1982) Spatial analysis of a karst depression population: clues to genesis. Geol Soc Am Bull 93: 1078–1086CrossRefGoogle Scholar
  19. LaMoreaux PE, Newton JG (1986) Catastrophic subsidence: an environmental Hazard, Shelby County, Alabama. Environ Geol Water Sci 8(1/2):25–40Google Scholar
  20. McConell H, Horn JM (1972) Probabilities of surface karst. In: Spatial analysis in geomorphology. New York, pp 111–113Google Scholar
  21. Ortí F, Salvany JM (1997) Continental evaporitic sedimentation in the Ebro Basin during the Miocene. In: Sedimentary deposition in rift and foreland Basins in France and Spain. Columbia University Press, New York, pp 420–429Google Scholar
  22. Palmquist RC (1979) Geological controls on doline characteristics in mantled karst. Zeitschrift für Geomorphologie N.F. Suppl 32: 90–106Google Scholar
  23. Quirantes J (1978) Estudio Sedimentológico y Estratigráfico del Terciario continental de Los Monegros. Institución Fernando El Católico, Zaragoza, pp 207Google Scholar
  24. Soriano MA, Simón JL (1995) Alluvial dolines in the central Ebro Basin, Spain: spatial and environmental hazard analysis. Geomorphology 11:295–309CrossRefGoogle Scholar
  25. Taqieddin SA, Abderahman NS, Atallah M (2000) Sinkhole hazards along the eastern Dead Sea shoreline area, Jordan: a geological and geotechnical consideration. Environ Geol 39(11):1237–1253CrossRefGoogle Scholar
  26. Waltham AC (1989) Ground subsidence. Blackie, New York, pp 202Google Scholar
  27. Williams P (1972a) The analysis of spatial characteristics of karst terrains. In: Spatial analysis in geomorphology: New York, pp 135–169Google Scholar
  28. Williams P (1972b) Morphometric analysis of polygonal karst in New Guinea. Geol Soc Am Bull 83:761–796Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • F. Gutiérrez-Santolalla
    • 1
  • M. Gutiérrez-Elorza
    • 1
  • C. Marín
    • 1
  • G. Desir
    • 1
  • C. Maldonado
    • 1
  1. 1.Dpto. de Ciencias de la Tierra, Facultad de CienciasUniversidad de ZaragozaZaragozaSpain

Personalised recommendations