Environmental Geology

, Volume 47, Issue 2, pp 185–196 | Cite as

Acid mine drainage and acid rock drainage processes in the environment of Herrerías Mine (Iberian Pyrite Belt, Huelva-Spain) and impact on the Andevalo Dam

  • J. A. GrandeEmail author
  • R. Beltrán
  • A. Sáinz
  • J.C. Santos
  • M. L. de la Torre
  • J. Borrego
Original Article


The present work describes the process of acid water discharge into the Andévalo Dam (Iberian Pyrite Belt, Huelva-Spain) starting from the interpretation of rainfall data and chemical analyses regarding pH, conductivity, metal and sulphate content in water, from a time series corresponding to the sampling of two confluent channels that discharge water into the referred dam. Statistical data treatment allows us to conclude the existence of acid mine drainage processes in the Chorrito Stream, which are translated into very low pH values and high sulphate and metal concentrations in the water coming from Herrerías Mine. On the other hand, the Higuereta Stream shows, for the same parameters, much lower values that can be interpreted as the channel response to acid rock drainage processes in its drainage basin induced by the rocky outcrops of the Iberian Pyrite Belt.


Acid mine drainage Acid rock drainage Heavy metals Iberian Pyrite Belt 



The present study results are a contribution of the CICYT REN2002-01897/HID project, granted by the Spanish Ministry of Science and Technology.


  1. Amos PW, Younger PL (2003) Substrate characterization for a subsurface reactive barrier to treat colliery spoil leachate. Water Res 37:108–120CrossRefPubMedGoogle Scholar
  2. Azcue JM (1999) Environmental impacts of mining activities. Springer, Berlin, Heidelberg New YorkGoogle Scholar
  3. Begon M, Harper JL, Towsend CR (1999) Ecología. individuos, poblaciones y comunidades. Omega, BarcelonaGoogle Scholar
  4. Bellinfante N, García-Muñoz MT (2001) Dinámica de metales pesados en la cuenca del río Malagón: contenidos totales de metales pesados. Bol Soc Española Mineral 24-A:87–88Google Scholar
  5. Bisquerra R (1989) Introducción conceptual al análisis multivariable. PPU, SA, BarcelonaGoogle Scholar
  6. Borrego J (1992) Sedimentología del estuario del Río Odiel, Huelva, S.O. España. PhD Thesis, University of SevillaGoogle Scholar
  7. Borrego J, Morales JA, de la Torre ML, Grande JA (2002) Geochemical characteristics of heavy metal pollution in surface sediments of the Tinto and Odiel river estuary (southwestern Spain) Environ Geol 41:785–796Google Scholar
  8. Braungardt CB, Achterberg EP, Nimmo M (1998) Behaviour of dissolved trace metals in the Rio Tinto/Río Odiel Estuarine System. In: Morales JA, Borrego J (eds) European Land–Ocean Interaction studies, 2nd Annual Scientific Conference, Abstracts 51Google Scholar
  9. Bryan GW, Langston WJ (1992) Biovallability, accumulation and effect of heavy metals in sediments with special reference to UK estuaries. Environ Poll 76:89–131CrossRefGoogle Scholar
  10. Chen S, Lin J (2001) Bioleaching of heavy metals from sediment: significance of pH. Chemosphere 44:1093–1102CrossRefPubMedGoogle Scholar
  11. Commonwealth of Pennsylvania (1994) Water quality assessment in western Pennsylvania watershed. Commonwealth of Pennsylvania, Department of Environmental Protection, PennsylvaniaGoogle Scholar
  12. Darwin L, Sepphard J (2001) Use of conductivity to monitor the treatment of acid mine drainage by sulphate reducing bacteria. Water Res 35(8):281–2086Google Scholar
  13. Davis RA Jr, Welty AT, Borrego J, Morales JA, Pendón JG, Ryan JG (2000) Rio Tinto estuary (Spain): 5,000 years of pollution. Environ Geol 39:1107–1116CrossRefGoogle Scholar
  14. Dogan PA (1999) Characterization of mine waste for prediction of acid mine drainage. In: Azcue JM (ed) Environmental impacts of mining activities. Springer, Berlin Heidelberg New York, pp 19–38Google Scholar
  15. Elbaz-Poulichet F, Morley NH, Cruzado A, Velasquez Z, Achterberg EP, Braungardt CB (1999) Trace metal and nutrient distribution in an extremely low pH (2.5) river-estuarine system, the Ria of Huelva (south-west Spain). Sci Total Environ 227:73–83CrossRefGoogle Scholar
  16. Elbaz-Poulichet F, Dupuy C, Cruzado A, Velasquez Z, Achterberg E, Braungardt C (2000) Influence of sorption processes by iron oxides and algae fixation on arsenic and phosphate cycle in an acidic estuary (Tinto river, Spain). Water Res 34(12–15):3222–3230Google Scholar
  17. Elbaz-Poulichet F, Braungardt C, Achterberg E, Morley N, Cossa D, Beckers J, Nomérange P, Cruzado A, Leblanc M (2001) Metal biogeochemistry in the Tinto-Odiel rivers (southern Spain) and in the Gulf of Cadiz: a synthesis of the results of TOROS project. Continent Shelf Res 21(18–19):1961–1973Google Scholar
  18. EMCBC (1996) The perpetual pollution machine. Acid mine drainage. BC Mining Control, CanadaGoogle Scholar
  19. Feasby DG, Tremblay GA (1995) New technologies to reduce environmental liability from acid generating mine waste. In: Hyne TP, Blanchette MV (eds) Proc of Subury 95 Mining and the Environ, Ontario, vol 2, pp 643–647Google Scholar
  20. Förstner U, Wittmann GTW (1983) Metal pollution in the aquatic environment. Springer, Berlin Heidelberg New YorkGoogle Scholar
  21. Grande JA, Borrego J, Morales JA (2000) Study of heavy metal pollution in the Tinto-Odiel estuary in southwestern Spain using spatial factor analysis. Environ Geol 39(10):1095–1101CrossRefGoogle Scholar
  22. Grande JA, Sáinz A, Beltrán R, González F, de la Torre ML, Santos JA, Borrego J, Cerón JC (2003a) Caracterización de procesos de drenaje de aguas ácidas de mina en la Faja Pirítica Ibérica sobre un embalse para abastecimiento público. In VIII Congreso de Ingeniería Ambiental. Feria Int Bilbao 443–452Google Scholar
  23. Grande JA, Borrego J, Morales JA, de la Torre ML (2003b) A description of how metal pollution occurs in the Tinto-Odiel rias (Huelva-Spain) through the application of cluster analysis. Mar Poll Bull 46(4):475–480CrossRefGoogle Scholar
  24. Grande JA, Borrego J, de la Torre ML, Sáinz A (2003c) Geochemistry of the estuary waters in the Tinto and Odiel rivers ( Huelva, Spain). Environ Geochem Health 25:233–246CrossRefPubMedGoogle Scholar
  25. Johansen P, Asmund G (1999) Pollution from mining in Greenland: monitoring and mitigation of environmental impacts. In: Azcue JM (ed) Environmental impacts of mining activities. Springer, Berlin Heidelberg New YorkGoogle Scholar
  26. Kim J, Chon H (2001) Pollution of a water course impacted by acid mine drainage in the Imgok creek of the Gangreung coal field, Korea. Appl Geochem 16:1387–1396CrossRefGoogle Scholar
  27. Kwong YTJ, Lawrence JR (1998) Acid generation and metal immobilization in the vicinity of a natural acid lake in Central Yukon Territory, Canada. In: Geller W, Klapper H, Salomons W (eds) Acid mining Lakes. Springer, Berlin Heidelberg New YorkGoogle Scholar
  28. Leblanc M, Morales JM, Borrego J, Elbaz-Poulichet F (2000) 4.500-year-old mining pollution in southwestern Spain: long-term implications for modern mining pollution. Econ Geol 95:655–662Google Scholar
  29. López F, Sanz M (2001) Desarrollo sostenible: Presa del Andévalo Huelva. Cauce 2000, COICCP Madrid, pp 46–53Google Scholar
  30. Lyew D, Sheppard J (2001) Use of conductivity to monitor the treatment of acid mine drainage by sulphate-reducing bacteria. Water Res 35(8):2081–2086CrossRefPubMedGoogle Scholar
  31. Nebel BJ, Wrigth RT (1999) Ciencias ambientales. Ecología y desarrollo sostenible. Prentice Hall, MéxicoGoogle Scholar
  32. Nicholson RV (1994) Iron-sulfite oxidation mechanism. In White AF, Brantley RJ (eds) Chemical weathering rates of silicate minerals. Miner Soc Am Mineral 31:173–225Google Scholar
  33. Pinedo Vara I (1963) Piritas de Huelva. Summa, MadridGoogle Scholar
  34. Sáez R, Pascual E, Toscano M, Almodovar GR (1999) The Iberian type of volcano-sedimentary massive sulphide deposits. Miner Deposita 34:549–570CrossRefGoogle Scholar
  35. Sáinz A (1999) Estudio de la contaminación química de origen minero en el río Odiel. PhD Thesis, University of HuelvaGoogle Scholar
  36. Sáinz A, Grande JA, de la Torre ML, Sánchez-Rodas D (2002) Characterisation of sequential leachate discharges of mining waste rock dumps in the Tinto and Odiel rivers. J Environ Manage 64(4):345–353CrossRefPubMedGoogle Scholar
  37. Sáinz A, Grande JA, de la Torre ML (2003a) Analysis of the impact of local corrective measures on the input of contaminants from the Odiel river to the ria of Huelva (Spain). Water Air Soil Poll 144:375–389CrossRefGoogle Scholar
  38. Sáinz A, Grande JA, de la Torre ML (2003b) Odiel river, acid mine drainage and current characterisation by means of univariate analysis. Environ Int 29:51–59CrossRefPubMedGoogle Scholar
  39. Singh G, Rawat NS (1985)Removal of trace elements from acid mine drainage. Int J Mine Water IMWA Granada 2:817–827Google Scholar
  40. Weatherell CJ, Feasby DG, Tremblay GA (1997) The mine environment natural drainage program. In: Proc of PMI 97, 28th Annual Seminars and Symp, ChicagoGoogle Scholar
  41. Younger PL (1997) The longevity of minewater pollution: a basis for decision-making. Sci Total Environ 194–195:457–466Google Scholar
  42. Yukselen M, Alpaslan B (2001) Leaching of metals from soil contaminated by mining activities. J Hazard Mater B87:289–300CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • J. A. Grande
    • 1
    Email author
  • R. Beltrán
    • 2
  • A. Sáinz
    • 1
  • J.C. Santos
    • 2
  • M. L. de la Torre
    • 1
  • J. Borrego
    • 3
  1. 1.Grupo de Recursos y Calidad del Agua, Escuela Politécnica SuperiorUniversidad de HuelvaHuelva
  2. 2.Grupo de Análisis Agroalimentario y Medioambiental, Facultad de CienciasUniversidad de HuelvaHuelvaSpain
  3. 3.Departamento de Geología, Facultad de CienciasUniversidad de HuelvaHuelvaSpain

Personalised recommendations