Environmental Geology

, Volume 45, Issue 3, pp 350–366 | Cite as

Salinization in coastal aquifers of arid zones: an example from Santo Domingo, Baja California Sur, Mexico

  • A. Cardona
  • J. J. Carrillo-Rivera
  • R. Huizar-Álvarez
  • E. Graniel-Castro
Original Article


Groundwater quality in the Santo Domingo Irrigation District area in Baja California Sur, Mexico, indicates the presence of various salinization processes, (1) the geological matter of marine origin comprising the aquifer material suffers diagenetic effects due to its interaction with groundwater of low salinity, (2) the effects of intensive agriculture practices produce effluents that infiltrate to the saturated zone, and (3) the extraction of groundwater causes modifications in the natural flow system induces lateral flow of seawater from the coast line. However, groundwater management has been carried out with the belief that the latter is the main source of salinization. This has resulted in a policy of installing wells increasingly far from the coast, which is not solving the problem. Irrigation-return and seawater that remains in the geological units have been identified as major sources of salinization. Controls should be imposed when installing wells in contact with clayey units that form the base of the aquifer. Extracted groundwater consists of a mixture of (1) groundwater of relatively low salinity that circulates in the aquifer and (2) an extreme member with salinity different to seawater contained mainly in formations that have low permeability, which limits the aquifer underneath. The geochemistry of carbonates and cation-exchange reactions (both direct and reverse) control the concentration of Ca, Mg, Na, and HCO3, as well as pH values. The concentrations of dissolved trace elements (F, Li, Ba, Sr) suggest that the extreme saline member is different from the average seawater composition. A distinction between the salinization caused by farming practices and that blamed on seawater is defined by the use of NO3.


Baja California Sur Coastal aquifer Hydrochemistry Salinization Seawater intrusion 


  1. ACSA (Ariel Construcciones SA) (1969) Estudio geohidrológico completo de los acuíferos del Valle de Santo Domingo, Baja California Sur. Informe técnico T-1. Secretaría de Agricultura y Recursos Hidráulicos, MéxicoGoogle Scholar
  2. Appelo CAJ, Postma D (1996) Geochemistry, groundwater and pollution. Balkema, RotterdamGoogle Scholar
  3. Bear J, Dagan G (1962) The steady interface between two immiscible fluids in a two-dimensional field of flow. Hydraulic Lab, Technion, Haifa Israel, IASH, P,N. Prog. Report 2Google Scholar
  4. Beekman HE (1991) Ion chromatography of fresh and salt water intrusions. PhD Thesis, Free University, AmsterdamGoogle Scholar
  5. Beekman HE, Appelo D (1990) Ion chromatography of fresh-and salt-water displacement: laboratory experiments and multicomponent transport modeling. J Cont Hydrol 7:21–37CrossRefGoogle Scholar
  6. Calvache ML, Pulido-Bosch A (1994) Modeling the effects of salt-water intrusion dynamics for a coastal karstified block connected to a detrital aquifer. Groundwater 32(5):767–771Google Scholar
  7. Calvache ML, Pulido-Bosch A (1997) Effects of geology and human activity on the dynamics of salt-water intrusion in three aquifers in southern Spain. Environ Geol 30:215–223CrossRefGoogle Scholar
  8. Chapelle FH, Knobel LL (1983) Aqueous geochemistry and the exchangeable cation composition of glauconite in the Aquia aquifer, Maryland. Groundwater 21:343–352Google Scholar
  9. Chiocchini U, Gisotti G, Macioce A, Manna F, Bolasco A, Lucarini C (1997) Environmental geology problems in the Tyrrhenian coastal area of Santa Marinella, province of Rome, central Italy. Environ Geol 32(1):1–8CrossRefGoogle Scholar
  10. Cserna de Z (1989) An outline of the geology of Mexico. In: The geology of North America: an overview, ch 9. Geol Soc Am Bull A, pp 233–264Google Scholar
  11. Custodio E, Llamas RM (1983) Hidrología subterránea, 2nd edn. Omega, BarcelonaGoogle Scholar
  12. DESISA (Desarrollo y Sistemas S A) (1997) Actualización del estudio geohidrológico del Valle de Santo Domingo, Baja California Sur. Informe técnico para Comisión Nacional del AguaGoogle Scholar
  13. Díaz-Jiménez G (1981) La sobreexplotación al acuífero del valle de Santo Domingo, BCS, sus consecuencias y posibles soluciones. MSc Thesis, Colegio Posgraduados Chapingo, MéxicoGoogle Scholar
  14. Edmunds WM, Carrillo-Rivera JJ, Cardona A (2002) Geochemical evolution of groundwater beneath Mexico city. J Hydrol 258(1–24)Google Scholar
  15. Freeze RA, Cherry JA (1979) Groundwater. Prentice–Hall, Englewood CliffsGoogle Scholar
  16. Giménez E, Morell I (1997) Hydrogeochemical analysis of salinization processes in the coastal aquifer of Oropesa (Castellón, Spain). Environ Geol 29:118–131CrossRefGoogle Scholar
  17. Glover RE (1959) The pattern of fresh water flow in a coastal aquifer. J Geophys Res 64:457–459Google Scholar
  18. Graniel-Castro E, Cardona A, Carrillo-Rivera JJ (1999) Hidrogeoquímica en el acuífero calcáreo de Mérida Yucatán; elementos traza. Ingeniería Hidráulica México 14(3):19–28Google Scholar
  19. Hem JD (1985) Study and interpretation of the chemical characteristics of natural water, 3rd edn. US Geol Surv Water-Supply Paper 2254Google Scholar
  20. Korom SF (1992) Natural denitrification in the unsaturated zone: a review. Water Resour Res 28(6):1657–1668Google Scholar
  21. Lambrakis N, Kallergis G (2001) Reaction of subsurface coastal aquifers to climate and land use changes in Greece; modeling of groundwater refreshening patterns under natural recharge conditions. J Hydrol 245:19–31Google Scholar
  22. Lawrence AR, Lloyd JW, Marsh JM (1976) Hydrochemistry and groundwater mixing in part of the Lincolnshire limestone aquifer, England. Groundwater 14:12–20Google Scholar
  23. Lloyd JW, Heathcotte JA (1985) Natural inorganic hydrochemistry in relation to groundwater. Clarendon Press, OxfordGoogle Scholar
  24. Manzano M, Custodio E (1998) Origen de las aguas salobres en sistemas acuíferos deltaicos: Aplicación de la teoría de la cromatografía iónica al acuífero del Delta del Llobregat. Procc IV Congreso Latinoamericano de Hidrología Subterránea, Montevideo, Uruguay, pp 973–996Google Scholar
  25. Martínez DE, Bocanegra EM (2002) Hydrogeochemistry and cation-exchange processes in the coastal aquifer of Mar Del Plata, Argentina. Hydrogeol J 10(3):393–408CrossRefGoogle Scholar
  26. Mina UF (1957) Bosquejo geológico del territorio sur de la Baja California. Asoc Mex Geol Petrol IX:139–269Google Scholar
  27. Moran-Zenteno D (1994) The geology of the Mexican Republic. Am Assoc Petrol Geol Studies in Geology, no 39, USAGoogle Scholar
  28. Nordstrom DK, Ball JW, Donahoe RJ, Whittemore D (1989) Groundwater chemistry and water–-rock interactions at Stripa. Geochim Cosmochim Acta 53:1727–1740Google Scholar
  29. Ortlieb L (1991) Quaternary shorelines along the northeastern Gulf of California, Geochronological data and neotectonic implications. In: Pérez-Segura E, Jacques-Ayala C (eds) Studies of Sonora geology. Geol Soc Am Spec Paper 254:95–120Google Scholar
  30. Parkhurst DL (1995) User’s guide to PHREEQC: a computer program for speciation, reaction-path, advective-transport and inverse geochemical calculations. US Geol Surv Water-Res Invest Rep 95-4227Google Scholar
  31. Petalas CP, Diamantis IB (1999) Origin and distribution of saline groundwaters in the upper Miocene aquifer system, coastal Rhodope area, northeastern Greece. Hydrogeol J 7(3):305–316CrossRefGoogle Scholar
  32. Richter BC, Kreitler CW (1993) Geochemical techniques for identifying sources of ground-water salinization. CRC Press, Boca RatonGoogle Scholar
  33. Rivera A, Ledoux E, Sauvagnac S (1990) A compatible single-phase/two-phase numerical model. 2. Application to a coastal aquifer in Mexico. Ground Water 28(2):215–223Google Scholar
  34. Rodvang SJ, Simpkins WW (2001) Agricultural contaminants in Quaternary aquitards: a review of occurrence and fate in North America. Hydrogeol J 9(1):44–59Google Scholar
  35. Sadeg AS, Karahanoðlu N (2001) Numerical assessment of seawater intrusion in the Tripoli region, Libya. Environ Geol 40:1151–1168CrossRefGoogle Scholar
  36. Sakr S (1999) Validity of a sharp-interface model in a confined coastal aquifer. Hydrogeol J 7(2):155–160CrossRefGoogle Scholar
  37. Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10(1):18–39CrossRefGoogle Scholar
  38. Schmorak S (1967) Saltwater encroachment in the Coastal Plain of Israel. Int Assoc Sci Hydrol Symp 72:305–318Google Scholar
  39. Steinich B, Escolero O, Marín LE (1998) Salt-water intrusion and nitrate contamination in the Valley of Hermosillo and El Sahuaral coastal aquifers, Sonora, Mexico. Hydrogeol J 6(4):518–526CrossRefGoogle Scholar
  40. Stiff HA (1951) The interpretation of chemical water by means of patterns. J Petrol Technol 3:15–17Google Scholar
  41. Stuyfzand PJ (1999) Patterns in groundwater chemistry resulting from groundwater flow. Hydrogeol J 7(1):15–27CrossRefGoogle Scholar
  42. TMI (Técnicas Modernas de Ingeniería, SA) (1979) Estudio Integral para la rehabilitación del Valle de Santo Domingo, Estado de Baja California Sur. Informe técnico. Secretaría de Agricultura y Recursos HidráulicosGoogle Scholar
  43. Zhou X, Chen M, Ju X, Ning X, Wang J (2000) Numerical simulation of sea water intrusion near Beihai, China. Environ Geol 40(1–2):223–233Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • A. Cardona
    • 1
  • J. J. Carrillo-Rivera
    • 2
  • R. Huizar-Álvarez
    • 3
  • E. Graniel-Castro
    • 4
  1. 1.Ciencias de la Tierra, Facultad de IngenieríaUASLPSan Luis PotosíMéxico
  2. 2.Instituto de GeografíaUNAMCoyoacán04510 México
  3. 3.Instituto de GeologíaUNAMCoyoacán04510 México
  4. 4.Facultad de IngenieríaUADYCordemex MéridaMéxico

Personalised recommendations