Environmental Geology

, Volume 44, Issue 3, pp 325–332

Heavy metals and metalloids in sediments from the Llobregat basin, Spain

Original Article

Abstract

The concentration of heavy metals and metalloids (As, Cd, Cr, Cu, Hg, Ni, Pb, Sb and Zn) in sediments from the River Llobregat and its tributaries (Anoia and Cardener) was studied. Samples collected at 17 locations during four different periods were analysed by ICP-MS. The heavy metal enrichment at some sites along the rivers reflects the effects of agricultural activities, sewage treatment plant effluents, collectors' discharges and industrial activities. Principal component analysis (PCA) was used to describe trends in contamination and to find groupings among the investigated areas. The Llobregat and Cardener sediments appeared to have features of an unpolluted river, even though significant amounts of domestic and industrial wastewater are discharged into these rivers. On the other hand, the sediments from the River Anoia showed high Cr and Hg levels originating from industrial activities. The concentrations of Cr and Hg ranged from 91–540 and 0.28–2.29 μg/g respectively.

Keywords

Sediments pollution Trace elements Llobregat River Spain ICP-MS analysis Anthropogenic inputs 

References

  1. Belkin HE, Spark HM (1993) Mercury, arsenic, antimony and selenium contents of sediments from the Kuskokwim River, USA. Environ Geol 22:106–110Google Scholar
  2. Bilos C, Colombo JC, Rodriguez MJ (1998) Trace metals in suspended particles, sediments and Asiatic clams of the Rio de la Plata Estuary, Argentina. Environ Pollut 99:1–11Google Scholar
  3. Borras JM, Gonzalez MP, Martin J (1993) Atlas de Catalunya. Geografia comarcal, universal, històrica. Bibliograf SA, BarcelonaGoogle Scholar
  4. Bubb EM, Lester J (1994) Anthropogenic heavy metal inputs to lowland river systems, a case study. The River Stour, UK. Water Air Soil Pollut 78:279–296Google Scholar
  5. Casas JM, Rubió R, Rauret G (1990a) Estudio de los sedimentos del rio Cardener. Contaminación por metales pesados. Tecno Agua 74:17–24Google Scholar
  6. Casas JM, Rubió R, Rauret G (1990b) Optimizacion simplex del ataque ácido de sedimentos fluviales para la determinación de plomo. Quím Anal 9:163–170Google Scholar
  7. Crommentjuijn TM, Polder MD, Van de Plassche EJ (1997) Maximum permissible concentrations and negligible concentrations for metals, taking background concentration into account. RIVM Rep 601501001. National Institute of Public Health and the Environment, Bilthoven, The Netherlands, pp 1–260Google Scholar
  8. Devok VM, Araujo F, Van Grieken R, Subramanian V (1997) Chemical composition of sediments and suspended matter from the Cauvery and Brahmaputra Rivers (India). Science Total Environ 212:80–105Google Scholar
  9. European Union (1979) Council Directive 79/409/EEC, of 2 April 1979, on the conservation of wild birds. EU, BrusselsGoogle Scholar
  10. European Union (1998) Council Directive 98/83/EC, of 3 November 1998, on the quality of water intended for human consumption. EU, BrusselsGoogle Scholar
  11. Facetti J, Dekov VM, Van Grieken R (1998) Heavy metals in sediments from the Paraguay River: a preliminary study. Sci Total Environ 209:79–86CrossRefPubMedGoogle Scholar
  12. Förstner U, Wittmann GTW (1981) Metal pollution in the aquatic environment, 2nd edn. Springer, Berlin Heidelberg New YorkGoogle Scholar
  13. Fuchs S, Haritopolou T, Schäfer M, Wilhelmi M (1997) Heavy metals in freshwater ecosystems introduced by urban rainwater runoff—monitoring of suspended solids river sediments and biofilms. Water Sci Technol 36:277–282CrossRefGoogle Scholar
  14. Gallart GF (1991) Estudi geomorfologic de la conca d'Odena. Revista d'Arqueologia, Prehistoria i Historia Antiga. Secció d'Arqueologia del Centre d'Estudis Comarcals d'Igualada, Barcelona, 45 ppGoogle Scholar
  15. Garban B, Ollivion D, Carru AM, Chesterikoff A (1996) Origin, retention and release of trace metals from sediments of the River Seine. Water Air Soil Pollut 87:363–381Google Scholar
  16. Long GL, Winefordner JD (1983) Limit of detection. Anal Chem 55:712–724Google Scholar
  17. Prieto G (1998) Geochemistry of heavy metals derived from gold-bearing sulphide minerals in the Marmato district (Colombia). J Geochem Explor 64:215–222CrossRefGoogle Scholar
  18. Puig P, Palanques A, Sanchez-Cabrera JA, Masqué P (1999) Heavy metals in particulate matter and sediments in the southern Barcelona sedimentation system (north-western Mediterranean). Mar Chem 63:311–329CrossRefGoogle Scholar
  19. Ramamoorthy S, Rust BR (1978) Heavy metals exchange processes in sediment water systems. Environ Geol 2:165–172Google Scholar
  20. Rubio R, López-Sanchez JF, Rauret G (1991) La especiación sólida de trazas de metales en sedimentos. Aplicación a sedimentos muy contaminados. Anal Quím 87:599–605Google Scholar
  21. Salomons W, Förstner U (1984) Metals in the hydrocycle. Springer, Berlin Heidelberg New YorkGoogle Scholar
  22. Usero J, Morillo J, Gracia I (1997) Contaminación por metales en sedimentos acuáticos. Tecnol Agua 166:44–50Google Scholar
  23. Vaithiyanathan P, Ramanathan AL, Subramanian V (1993) Transport and distribution of heavy metals in Cauvery River. Water Air Soil Pollut 71:13–28Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Departament d'Enginyeria Minera i Recursos NaturalsUniversitat Politècnica de CatalunyaManresaSpain
  2. 2.Universidad Privada Boliviana Km 6.5 a QuillacolloCasilla Bolivia

Personalised recommendations