Advertisement

Applied Microbiology and Biotechnology

, Volume 53, Issue 1, pp 98–107 | Cite as

Degradation of phenanthrene by different bacteria: evidence for novel transformation sequences involving the formation of 1-naphthol

  • S. K. Samanta
  • A. K. Chakraborti
  • R. K. Jain
ORIGINAL PAPER

Abstract

Four polycyclic aromatic hydrocarbon (PAH)- degrading bacteria, namely Arthrobacter sulphureus RKJ4, Acidovorax delafieldii P4-1, Brevibacterium sp. HL4 and Pseudomonas sp. DLC-P11, capable of utilizing phenanthrene as the sole source of carbon and energy, were tested for its degradation using radiolabelled phenanthrene. [9-14C]Phenanthrene was incubated with microorganisms containing 100 mg/l unlabelled phenanthrene and the evolution of 14CO2 was monitored: within 18 h of incubation, 30.1, 35.6, 26.5 and 2.1% of the recovered radiolabelled carbon was degraded to 14CO2 by RKJ4, P4-1, HL4 and DLC-P11, respectively. When mixtures of other PAHs such as fluorene, fluoranthene and pyrene, in addition to phenanthrene, were added as additional carbon sources, there was a 36.1 and 20.6% increase in 14CO2 production from [9-14C]phenanthrene in the cases of RKJ4 and HL4, respectively, whereas P4-1 and DLC-P11 did not show any enhancement in 14CO2 production. Although, a combination of many bacteria enhances the degradation of organic compounds, no enhancement in the degradation of [9-14C]phenanthrene was observed in mixed culture involving all four microorganisms together. However, when different PAHs, as indicated above, were used in mixed culture, there was a 68.2% increase in 14CO2 production. In another experiment, the overall growth rate of P4-1 on phenanthrene could be enhanced by adding the non-ionic surfactant Triton X-100, whereas RKJ4, HL4 and DLC-P11 did not show any enhancement in growth. Pathways for phenanthrene degradation were also analysed by thin-layer chromatography, gas chromatography and gas chromatography-mass spectrometry. Common intermediates such as o-phthalic acid and protocatechuic acid were detected in the case of RKJ4 and o-phthalic acid was detected in the case of P4-1. A new intermediate, 1-naphthol, was detected in the cases of HL4 and DLC-P11. HL4 degrades phenanthrene via 1-hydroxy-2-naphthoic acid, 1-naphthol and salicylic acid, whereas DLC-P11 degrades phenanthrene via the formation of 1-hydroxy-2-naphthoic acid, 1-naphthol and o-phthalic acid. Both transformation sequences are novel and have not been previously reported in the literature. Mega plasmids were found to be present in RKJ4, HL4 and DLC-P11, but their involvement in phenanthrene degradation could not be established.

Keywords

Polycyclic Aromatic Hydrocarbon Salicylic Acid Pyrene Phenanthrene Mixed Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • S. K. Samanta
    • 1
  • A. K. Chakraborti
    • 2
  • R. K. Jain
    • 1
  1. 1.Environmental Biotechnology Laboratory, Institute of Microbial Technology, Sector-39 A, Chandigarh-160036, India e-mail: rkj@lion.imtech.ernet.in Fax: +91-172-690585/690632IN
  2. 2.National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar-160062, IndiaIN

Personalised recommendations