Advertisement

Applied Microbiology and Biotechnology

, Volume 45, Issue 1–2, pp 162–168 | Cite as

Identification and production of a rhamnolipidic biosurfactant by a Pseudomonas species

  • S. Arino
  • R. Marchal
  • J. -P. Vandecasteele
Original Paper Applied Microbial and Cell Physiology

Abstract

A glycolipid-producing bacterium, Pseudomonas aeruginosa GL1, was isolated from the soil contaminated with polycyclic aromatic hydrocarbons (PAH) from a manufactured gas plant. The glycolipid produced was characterized in detail by chromatographic procedures as a mixture of four rhamnolipids, consisting of different associations of rhamnose and hydroxy fatty acids: the main component was monorhamnosyl di-3-hydroxydecanoic acid. The rhamnolipid composition presented marked analogies with a defined part of P. aeruginosa outer membrane lipopolysaccharides (lipopolysaccharide band A). Rhamnolipid production was stimulated under conditions of nitrogen limitation. Glycerol yielded higher productions than did hydrophobic carbon sources. Cell hydrophobicity decreased during growth on glycerol and on n-hexadecane whereas glycolipid production increased. P. aeruginosa GL1 was found to be unable to grow on a variety of 2, 3 and 4 cycle PAH. However, it was shown to persist after at least 12 subcultures in a bacterial population growing on a mixture of pure PAH, suggesting a physiological role for rhamnolipid as a means to enhance PAH availability in a mutualistic PAH-degrading bacterial community.

Keywords

Polycyclic Aromatic Hydrocarbon High Performance Liquid Chromatography Hydroxy Fatty Acid Rhamnolipids Rhamnolipid Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergmeyer HU, Beutler HO (1985) In: Bergmeyer HU (ed) Methods of enzymatic analysis, 3rd edn, vol 8. Verlag Chemie, Weinheim, pp 454–461Google Scholar
  2. Beutler HO, Wurst B, Fisher S (1986) Eine neue Methode zur enzymatischen Bestimmung von Nitrat in Lebensmitteln. Dtsch Lebensm-Rundschau 82: 283–289Google Scholar
  3. Davila AM, Marchal R, Monin N, Vandecasteele JP (1993) Identification and determination of individual sophorolipids in fermentation products by gradient elution high-performance liquid chromatography with evaporative light scattering detection. J Chromatogr 648: 139–149CrossRefGoogle Scholar
  4. Edwards J, Hayashi J (1965) Structure of a rhamnolipid from Pseudomonas aeruginosa. Arch Biochem Biophys 111: 415–421CrossRefGoogle Scholar
  5. Francy DS, Thomas JM, Raymond RL, Ward CH (1991) Emulsification of hydrocarbons by subsurface bacteria. J Ind Microbiol 8: 237–246CrossRefGoogle Scholar
  6. Guerra-Santos L, KŠppeli O, Fiechter A (1984) Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Appl Environ Microbiol 48: 301–305Google Scholar
  7. Herbert D, Phipps PJ, Strange RE (1971) Chemical analysis of microbial cells. In: Norris JR, Ribbons DW (eds) Methods in Microbiology 5B: 266–291, Academic Press, LondonGoogle Scholar
  8. Hisatsuka K, Nakahara T, Yamada K (1972) Protein-like activator for n-alkane oxidation by Pseudomonas aeruginosa S7B1. Agric Biol Chem 36: 1361–1369Google Scholar
  9. Jain DK, Lee H, Trevors JT (1992) Effect of addition of Pseudomonas aeruginosa UG2 inocula or biosurfactants on biodegradation of selected hydrocarbons in soil. J Ind Microbiol 10: 87–93CrossRefGoogle Scholar
  10. Keith LH, Telliard WA (1979) Priority pollutants. I. A perspective review. Environ Sci Technol 13: 416–423CrossRefGoogle Scholar
  11. Koch AK, Käppeli O, Fiechter A, Reiser J (1991) Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. J Bacteriol 173: 4212–4219Google Scholar
  12. Lazdunski A, Guzzo J, Filloux A, Bally M, Murgier M (1990) Secretion of extracellular proteins by Pseudomonas aeruginosa. Biochimie 72: 147–156CrossRefGoogle Scholar
  13. Lowry OH, Rosebrough NR, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275Google Scholar
  14. MacElwee CG, Lee H, Trevors JT (1990) Production of extracellular emulsifying agent by Pseudomonas aeruginosa UG1. J Ind Microbiol 5: 25–32CrossRefGoogle Scholar
  15. Marchal N, Bourdon JL (eds) (1973) Milieux de culture et identification biochimique des bactries. Doin Éditeurs, ParisGoogle Scholar
  16. Ng TK, Hu WS (1989) Adherence of emulsan-producing Acinetobacter calcoaceticus to hydrophobic liquids. Appl Microbiol Biotechnol 31: 480–485CrossRefGoogle Scholar
  17. Ochsner UA, Koch AK, Fiechter A, Reiser J (1994) Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J Bacteriol 176: 2044–2054Google Scholar
  18. Parra JL, Guinea M, Mansera M, Robert M, Mercade M, Comelles F, Bosch MP (1989) Chemical characterization and physicochemical behavior of biosurfactants. J Am Oil Chem Soc 66: 141–145CrossRefGoogle Scholar
  19. Persson A, Molin G (1987) Capacity for biosurfactant production of environmental Pseudomonas and Vibrionaceae growing on carbohydrates. Appl Microbiol Biotechnol 26: 439–442CrossRefGoogle Scholar
  20. Rendell NB, Taylor GW, Somerville M, Todd H, Wilson R, Cole PJ (1990) Characterization of Pseudomonas rhamnolipids. Biochim Biophys Acta 1045: 189–193Google Scholar
  21. Ridgway HF, Safarik J, Phipps D, Carl P, Clark D (1990) Identification and catabolic activity of well-derived gasoline-degrading bacteria from a contamined aquifer. Appl Environ Microbiol 56: 3565–3575Google Scholar
  22. Rivera M, McGroarty EJ (1989) Analysis of a common-antigen lipopolysaccharide from Pseudomonas aeruginosa. J Bacteriol 171: 2244–2248Google Scholar
  23. Rivera M, Bryan LE, Hancock REW, McGroarty EJ (1988) Heterogeneity of lipopolysaccharides from Pseudomonas aeruginosa: analysis of lipopolysaccharide chain length. J Bacteriol 170: 512–521Google Scholar
  24. Robert M, Mercade M, Bosch M, Parra JL, Espuny M, Mansera M, Guinea J (1989) Effect of the carbon source on biosurfactant production by Pseudomonas aeruginosa 44T1. Biotechnol Lett 11: 871–874CrossRefGoogle Scholar
  25. Rosenberg M, Rosenberg E (1981) Role of adherence in growth of Acinetobacter calcoaceticus RAG-1 on hexadecane. J Bacteriol 148: 51–57Google Scholar
  26. Stieber M, Haeseler F, Werner P, Frimmel FH (1994) A rapid screening method for microorganisms degrading polycyclic aromatic hydrocarbons in microplates. Appl Microbiol Biotechnol 40: 753–755CrossRefGoogle Scholar
  27. Sweeley CC, Wells WW, Bentley R (1966) Gas chromatography of carbohydrates. Methods Enzymol 8: 95–108CrossRefGoogle Scholar
  28. Syldatk C, Lang S, Wagner F (1985) Chemical and physical characterization of four interfacial-active rhamnolipids from Pseudomonas spec. DSM 2874 grown on n-alkanes. Z Naturforsch Sect C Biosci 40: 51–60Google Scholar
  29. Van Dyke MI, Couture P, Brauer M, Lee H, Trevors JT (1993) Pseudomonas aeruginosa UG2 rhamnolipid biosurfactant: structural characterization and their use in removing hydrophobic compounds from soil. Can J Microbiol 39: 1071–1078CrossRefGoogle Scholar
  30. Van Loosdrecht MCM, Lyklema J, Norde W, Schraa G, Zehnder AJB (1987) The role of bacterial cell wall hydrophobicity in adhesion. Appl Environ Microbiol 53: 1893–1897Google Scholar
  31. Wilkinson SG, Galbraith L (1975) Studies of lipopolysaccharides from Pseudomonas aeruginosa. Eur J Biochem 52: 331–343CrossRefGoogle Scholar
  32. Zhang Y, Miller R (1992) Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl Environ Microbiol 58: 3276–3282Google Scholar
  33. Zhang Y, Miller R (1994) Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Appl Environ Microbiol 60: 2101–2106Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • S. Arino
    • 1
  • R. Marchal
    • 1
  • J. -P. Vandecasteele
    • 1
  1. 1.Division Chimie Appliquée, Biotechnologies, MatériauxInstitut Français du PétroleRueil-Malmaison CedexFrance

Personalised recommendations