Applied Microbiology and Biotechnology

, Volume 45, Issue 1–2, pp 148–157

Killing of microorganisms by pulsed electric fields

  • T. Grahl
  • H. Märkl
Original Paper Applied Microbial and Cell Physiology


Lethal effects of pulsed electric fields (PEF) on suspensions of various bacteria, yeast, and spores in buffer solutions and liquid foodstuffs were examined. Living-cell counts of vegetative cell types were reduced by PEF treatment by up to more than four orders of magnitude (> 99.99%). On the other hand, endoand ascospores were not inactivated or killed to any great extent. The killing of vegetative cell types depends on the electrical field strength of the pulses and on the treatment time (the product of the pulse number and the decay time constant of the pulses). For each cell type, a specific critical electric field strength (Ec) and a specific critical treatment time (tc) were determined. Above these critical values, the fractions of surviving cells were reduced drastically. The “limits” Ec and tc depend on the cell characteristics as well as on the type of medium in which the cells are suspended. Especially in acid media living-cell counts were sufficiently decreased at very low energy inputs. In addition to the inactivation of microorganisms, the effect of PEF on food components such as whey proteins, enzymes and vitamins, and on the taste of foodstuffs was studied. The degree of destruction of these food components by PEF was very low or negligible. Moreover, no significant deterioration of the taste of foodstuffs was detected after PEF treatment. Disintegration of cells by PEF treatment in order to harvest intracellular products was also studied. Yeast cells, suspended in buffer solution, were not disintegrated by electric pulses. Hence, PEF treatment is an excellent process for inactivation of microorganisms in acid and in thermosensive media, but not for complete disintegration of microbial cells.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams JB (1991) Review: enzyme inactivation during heat processing of food stuffs. Int J Food Sci Technol 26: 1–20Google Scholar
  2. Castberg HE, Solberg P, Egelrud T (1975) Tributyrate as a substrate fot the determination of lipase activity in milk. J Dairy Res 42: 247–253CrossRefGoogle Scholar
  3. Cooper TG (1981) Biochemische Arbeitsmethoden, Walter de Gruyter, Berlin, p 54Google Scholar
  4. DIN 10 337 (Teil 1): Bestimmung der Phosphatase-Aktivität von Milch — Referenz-Verfahren. Deutsches Institut für Normung e. V. (DIN), 1977Google Scholar
  5. Doevenspeck H (1960) Verfahren und Vorrichtung zur Gewinnung der einzelnen Phasen aus dispersen Systemen. DE 1 237–541Google Scholar
  6. Doevenspeck H (1961) Influencing cells and cell walls by electrostatic impulses. Fleischwirtschaft 13: 986–987Google Scholar
  7. Doevenspeck H (1984) Elektroimpulsverfahren und Vorrichtung zur Behandlung von Stoffen. EP 0 148 380 A3Google Scholar
  8. Goldberg DM, Ellis G (1983) Isocitrate dehydrogenase. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol III. Enzymes 1: oxidoreductases, transferases, 3rd edn, VCH, Weinheim, pp 183–190Google Scholar
  9. Hamilton WA, Sale AJH (1967) Effect of high electric fields on microorganisms. II. Mechanisms of action of the lethal effect. Biochim Biophys Acta 148: 789–800Google Scholar
  10. Heiss R, Eichner K (1990) Haltbarmachen von Lebensmitteln: Chemische, physikalische und mikrobiologische Grundlagen der Verfahren. Springer Verlag, BerlinGoogle Scholar
  11. Hülsheger H (1984) Wirkung elektrischer Impulse hoher Feldstärke auf Mikroorganismen in wässrigen Suspensionen. Dissertation zur Erlangung des Doktorgrades der Humanbiologie der Medizinischen Hochschule HannoverGoogle Scholar
  12. Hülsheger H, Niemann EG (1980) Lethal effects of high voltage pulses on E. coli K12. Radiat Environ Biophys 18: 281–288CrossRefGoogle Scholar
  13. Hülsheger H, Potel J, Niemann EG (1981) Killing of bacteria with electric pulses of high field strength. Radiat Environ Biophys 20: 53–65CrossRefGoogle Scholar
  14. Hülsheger H, Potel J, Niemann EG (1983) Electric field effects on bacteria and yeast cells. Radiat Environ Biophys 22: 149–162CrossRefGoogle Scholar
  15. Husen N van, Gerlach U (1984) 5′-Nucleotidase—colorimetric method. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol IV. Enzymes 2: esterases, glycosidases, lyases, ligases. 3rd edn. VCH, Weinheim. p 106Google Scholar
  16. Jacob HE, Förster W, Berg H (1981) Microbiological implications of electric field effects. II. Inactivation of yeast cells and repair of their cell envelop. Z Allg Mikrobiol 21: 255–233CrossRefGoogle Scholar
  17. Jayaram S, Castle GSP, Maragaritis A (1992) Kinetics of sterilization of Lactobacillus brevis cells by the application of high voltage pulses. Biotechnol Bioeng 40: 1412–1420CrossRefGoogle Scholar
  18. Kessler HG (1988) Lebensmittel- und Bioverfahrenstechnik — Molkereitechnologie. Verlag A. Kessler, FreisingGoogle Scholar
  19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275Google Scholar
  20. Mertens B, Knorr D (1992) Development of nonthermal processes for food preservation. Food Technol 46: 124–133Google Scholar
  21. Mizuno A, Hayamizu M (1989) Destruction of bacteria by pulsed high voltage application. In: 6th International Symposium of High Voltage Engineering, August 28–September 1, New Orleans, Mississippi State UniversityGoogle Scholar
  22. Mizuno A, Hori Y (1988) Destruction of living cells by pulsed high-voltage application. IEEE Transact Ind Appl 24: 387–394CrossRefGoogle Scholar
  23. Oamen EE, Hansen AP, Swartzel R (1989) Effect of ultra-high temperature steam injection processing and aseptic storage on lable water soluble vitamins in milk. J Dairy Sci 72: 614–619CrossRefGoogle Scholar
  24. Pagliarini E, Peri C, Abba S (1990a) High temperature pasteurization of milk: sensory and chemical changes. Milchwissenschaft 45: 363–366Google Scholar
  25. Pagliarini E, Vernile M, Peri C (1990b) Kinetic study on color changes in milk due to heat. J Food Sci 55: 1766–1767CrossRefGoogle Scholar
  26. Sakurauchi Y, Kondo E (1980) Lethal effect of high electric fields on microorganisms. Nippon Nogeikagaku Kaishi 54: 837–844Google Scholar
  27. Sale AJH, Hamilton WA (1967) Effect of high electric fields on microorganisms. I. Killing of bacteria and yeast. Biochim Biophys Acta 148: 781–788Google Scholar
  28. Sale AJH, Hamilton WA (1968) Effect of high electric fields on microorganisms. III. Lysis of crythrocytes and protoplasts. Biochim Biophys Acta 163: 37–43CrossRefGoogle Scholar
  29. Sato M (1989) Sterilization by pulsed electric field. Kagaku Kougaku 53: 818–819Google Scholar
  30. Sato M, Tokita K, Sadaka M, Sakai T, Nakanishi K (1988) Sterilization of microorganisms by high-voltage pulsed discharge under water. Kagaku Kougaku Ronbunshu 14: 556–559Google Scholar
  31. Sitzmann W, Münch EW (1989) Elektrische Verfahren zur Keimabtötung. Ernährungs industrie 6: 54–58Google Scholar
  32. Steinau M (1992) Berechnung des zeitlichen Verlaufs eines elektrischen Hochspannungs impulses. Studie, Arbeitsbereich Biotechnologie I, Technische Universität Hamurg-HarburgGoogle Scholar
  33. Stellmach B (1988) Peroxidase. In: Bestimmungsmethoden Enzyme für Pharmazie, Lebensmittelchemie, Technik, Biochemie, Biologie Medizin. Steinkopff, Darmstadt, p 217Google Scholar
  34. Stürken K (1989) Konstruktion einer Hochspannungsküvettezum Abtöten von Mikroorganismen. Diplomarbeit, Arbeitsbereich Biotechnologie I, Technische Universität Hamburg-Harburg, P 15Google Scholar
  35. Süssmuth R, Eberspaecher J, Haag R, Springer W (1987) Biochemisch-mikrobiologisches Praktikum. Thieme, Stuttgart, p 317Google Scholar
  36. Vassault A (1983) Lactate dehydrogenase. In: Bergmeyer HU (ed). Methods of enzymatic analysis, vol III. Enzymes 1: oxidoreductases, transferases. 3rd edn. VCH, Weinheim, p 118Google Scholar
  37. Versaw Wk, Cuppett SL, Winters D, Williams LE (1989) An improved colorimetric method for bacterial lipase in nonfat dry milk. J Food Sci 54: 1557–1568CrossRefGoogle Scholar
  38. Zimmermann U (1986) Electrical breakdown, electropermeabilization and electrofusion. Rev Physiol Biochem Pharmacol 105: 175–256CrossRefGoogle Scholar
  39. Zimmermann U, Benz R (1980) Dependence of the electrical breakdown voltage on the charging time in Valonia utricularis. J Membr Biol 53: 33–43CrossRefGoogle Scholar
  40. Zimmermann U, Arnod WM, Mehrle W (1988) Biophysics of electroinjection and electrofusion. J Electrostat 21: 309–345CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • T. Grahl
    • 2
  • H. Märkl
    • 2
  1. 1.A.U.D.I.T. Consult GmbHHamburgGermany
  2. 2.Arbeitsbereich Biotechnologie I, Bioprozeß- und BioverfahrenstechnikTechnische Universität Hamburg-HarburgHamburgGermany

Personalised recommendations