Applied Microbiology and Biotechnology

, Volume 45, Issue 1–2, pp 127–131

Restriction endonuclease activity in Clostridium thermocellum and Clostridium thermosaccharolyticum

  • T. R. Klapatch
  • A. L. Demain
  • L. R. Lynd
Original Paper Applied Genetics and Regulations

Abstract

Clostridium thermocellum cell extracts exhibit specific endonuclease activity with very little non-specific exonuclease activity at 55°C. The Dam methylation system of Escherichia coli offers complete protection from digestion by C. thermocellum ATCC 27405 cell extracts for all DNA tested (totaling > 100 kb, insuring that most potential restriction sequences have been exposed). Based on both the Dam recognition sequence and the similarity of cell extract and MboI DNA digests, the C. thermocellum restriction enzyme recognition sequence appears to be 5′ GATC 3′. Cell extracts made from a second thermophile, C. thermosaccharolyticum ATCC 31960 do not exhibit specific endonuclease activity under the conditions tested. Genomic DNA from C. thermocellum exhibits a Dam+ phenotype while genomic DNA from C. thermosaccharolyticum exhibits a Dam phenotype.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azeddoug H, Reysset G (1991) Recognition sequence of a new methyl-specific restriction system from Clostridium acetobutylicum strain ABKn8. FEMS Microbiol Lett 78: 153–156CrossRefGoogle Scholar
  2. Azeddoug H, Hubert J, Reysset G (1989) Characterization of a methyl-specific restriction system in Clostridium acetobutylicum strain N1-4081. FEMS Microbiol Lett 65: 323–326CrossRefGoogle Scholar
  3. Dreiseikelmann B, Wackernagel W (1981) Absence in Bacillus subtilis and Staphylococcus aureus of the sequence specific deoxyribonucleic acid methylation that is conferred in E. coli K-12 by the dam and dcm enzymes. J Bacteriol 147: 259–261Google Scholar
  4. Hogsett DA, Ahn H-J, Bernardez TD, South CR, Lynd LR (1992) Direct microbial conversion:progress, prospects, and obstacles. Appl Biochem Biotechnol 34/35: 527–541CrossRefGoogle Scholar
  5. Klaenhammer TR (1987) Plasmid-directed mechanisms for bacteriophage defense in lactic streptococci. FEMS Microbiol Rev 46: 313 325CrossRefGoogle Scholar
  6. Lee SY, Mermelstein LD, Bennett GN, Papoutsakis ET (1992) Vector construction, transformation, and gene amplification in Clostridium acetobutylicum ATCC 824. N Y Acad of Scie Biochemical Engineering VII. 665: 39–51CrossRefGoogle Scholar
  7. Lynd LR, Ahn H-J, Anderson G, Hill P, Kersey DS, Klapatch T (1991) Thermophilic ethanol production:investigation of ethanol yield and tolerance in continuous culture. Appl Biochem Biotechnol 28/29: 549–570CrossRefGoogle Scholar
  8. Mermelstein LD, Welker NE, Bennett GN, Papoutsakis ET (1992) Expression of cloned homologous fermentative genes in Clostridium acetobutylicum ATCC 824. Biotechnology 10: 190–195CrossRefGoogle Scholar
  9. Modrich P. Roberts RJ (1982) In: Linn S, Roberts RJ (eds) Nucleases. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp 109–154Google Scholar
  10. Richards DF, Linnett PE, Oultram JD, Young M (1988) Restriction endonucleases in Clostridium pasteurianum ATCC 6013 and C. thermohydrosulfuricum DSM 568. J Gen Microbiol 134: 3151–3157Google Scholar
  11. Saddler JN, Chan MK-H (1983) Conversion of pretreated lignocellulosic substrates to ethanol by Clostridium thermocellum in monoand co-culture with Clostridium thermosaccharolyticum and Clostridium thermohydrosulfuricum. Can J Microbiol 30: 212–220CrossRefGoogle Scholar
  12. Slapack GE, Russell I, Stewart GG (1987) Thermophilic microbes in ethanol production. CRC, Boca Raton, Fla.Google Scholar
  13. Venkateswaran S, Demain AL (1985) The Clostridium thermocellum-Clostridium thermosaccharolyticum ethanol production process: nutritional studies and scale-down. Chem Eng Commun 45: 53 60CrossRefGoogle Scholar
  14. Wilkinson SR, Young M (1993) Wide diversity of genome size among different strains of Clostridium acetobutylicum. J Gen Microbiol 139: 1069–1076Google Scholar
  15. Williams DR, Young DI, Young M (1990) Conjugative plasmid transfer from Escherichia coli to Clostridium acetobutylicum. J Gen Microbiol 136: 819–826Google Scholar
  16. Young M, Minton NP, Staudenbauer WL (1989) Recent advances in the genetics of the clostridia. FEMS Microbiol Rev 63: 301–326CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • T. R. Klapatch
    • 1
  • A. L. Demain
    • 2
  • L. R. Lynd
    • 1
  1. 1.Department of Biological SciencesDartmouth CollegeHanoverUSA
  2. 2.Department of BiologyMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Thayer School of EngineeringDartmouth CollegeHanoverUSA

Personalised recommendations