Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Novel targets and strategies to combat borreliosis

Abstract

Lyme borreliosis is a bacterial infection that can be spread to humans by infected ticks and may severely affect many organs and tissues. Nearly four decades have elapsed since the discovery of the disease agent called Borrelia burgdorferi. Although there is a plethora of knowledge on the infectious agent and thousands of scientific publications, an effective way on how to combat and prevent Lyme borreliosis has not been found yet. There is no vaccine for humans available, and only one active vaccine program in clinical development is currently running. A spirited search for possible disease interventions is of high public interest as surveillance data indicates that the number of cases of Lyme borreliosis is steadily increasing in Europe and North America. This review provides a condensed digest of the history of vaccine development up to new promising vaccine candidates and strategies that are targeted against Lyme borreliosis, including elements of the tick vector, the reservoir hosts, and the Borrelia pathogen itself.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Andre F, Booy R, Bock H, Clemens J, Datta S, John T, Lee B, Lolekha S, Peltola H, Ruff T, Santosham M, Schmitt H (2008) Vaccination greatly reduces disease, disability, death and inequity worldwide. Bull World Health Organ 86:140–146. https://doi.org/10.2471/BLT.07.040089

  2. Anguita J, Ramamoorthi N, Hovius JWR, Das S, Thomas V, Persinski R, Conze D, Askenase PW, Rincón M, Kantor FS, Fikrig E (2002) Salp15, an Ixodes scapularis salivary protein, inhibits CD4(+) T cell activation. Immunity 16:849–859

  3. Auwaerter PG, Melia MT (2012) Bullying Borrelia: when the culture of science is under attack. Trans Am Clin Climatol Assoc 123:79–90

  4. Baker PJ, Wormser GP (2017) The clinical relevance of studies on Borrelia burgdorferi persisters. Am J Med 130:1009–1010. https://doi.org/10.1016/j.amjmed.2017.04.014

  5. Bensaci M, Bhattacharya D, Clark R, Hu LT (2012) Oral vaccination with vaccinia virus expressing the tick antigen subolesin inhibits tick feeding and transmission of Borrelia burgdorferi. Vaccine 30:6040–6046. https://doi.org/10.1016/j.vaccine.2012.07.053

  6. Brown EL, Kim JH, Reisenbichler ES, Höök M (2005) Multicomponent Lyme vaccine: three is not a crowd. Vaccine 23:3687–3696. https://doi.org/10.1016/j.vaccine.2005.02.006

  7. Buchthal J, Evans SW, Lunshof J, Telford SR, Esvelt KM (2019) Mice against ticks: an experimental community-guided effort to prevent tick-borne disease by altering the shared environment. Philos Trans R Soc Lond Ser B Biol Sci 374:20180105. https://doi.org/10.1098/rstb.2018.0105

  8. Cabezas-Cruz A, de la Fuente J (2017) Immunity to α-gal: toward a single-antigen pan-vaccine to control major infectious diseases. ACS Cent Sci 3:1140–1142. https://doi.org/10.1021/acscentsci.7b00517

  9. Cadavid D, O’Neill T, Schaefer H, Pachner AR (2000) Localization of Borrelia burgdorferi in the nervous system and other organs in a nonhuman primate model of Lyme disease. Lab Investig J Tech Methods Pathol 80:1043–1054. https://doi.org/10.1038/labinvest.3780109

  10. Cassatt DR, Patel NK, Ulbrandt ND, Hanson MS (1998) DbpA, but not OspA, is expressed by Borrelia burgdorferi during spirochetemia and is a target for protective antibodies. Infect Immun 66:5379–5387

  11. Chmelar J, Oliveira CJ, Rezacova P, Francischetti IMB, Kovarova Z, Pejler G, Kopacek P, Ribeiro JMC, Mares M, Kopecky J, Kotsyfakis M (2011) A tick salivary protein targets cathepsin G and chymase and inhibits host inflammation and platelet aggregation. Blood 117:736–744. https://doi.org/10.1182/blood-2010-06-293241

  12. Cinco M, Ruscio M, Rapagna F (2000) Evidence of Dbps (decorin binding proteins) among European strains of Borrelia burgdorferi sensu lato and in the immune response of LB patient sera. FEMS Microbiol Lett 183:111–114. https://doi.org/10.1111/j.1574-6968.2000.tb08942.x

  13. Comstedt P, Schüler W, Meinke A, Lundberg U (2017) The novel Lyme borreliosis vaccine VLA15 shows broad protection against Borrelia species expressing six different OspA serotypes. PLoS One 12:e0184357. https://doi.org/10.1371/journal.pone.0184357

  14. Connally NP, Durante AJ, Yousey-Hindes KM, Meek JI, Nelson RS, Heimer R (2009) Peridomestic Lyme disease prevention: results of a population-based case-control study. Am J Prev Med 37:201–206. https://doi.org/10.1016/j.amepre.2009.04.026

  15. Dai J, Narasimhan S, Zhang L, Liu L, Wang P, Fikrig E (2010) Tick histamine release factor is critical for Ixodes scapularis engorgement and transmission of the Lyme disease agent. PLoS Pathog 6:e1001205. https://doi.org/10.1371/journal.ppat.1001205

  16. de la Fuente J, Almazán C, Canales M, Pérez de la Lastra JM, Kocan KM, Willadsen P (2007) A ten-year review of commercial vaccine performance for control of tick infestations on cattle. Anim Health Res Rev 8:23–28. https://doi.org/10.1017/S1466252307001193

  17. de la Fuente J, Pacheco I, Villar M, Cabezas-Cruz A (2019) The alpha-gal syndrome: new insights into the tick-host conflict and cooperation. Parasit Vectors 12:154. https://doi.org/10.1186/s13071-019-3413-z

  18. De Meneghi D, Stachurski F, Adakal H (2016) Experiences in tick control by acaricide in the traditional cattle sector in Zambia and Burkina Faso: possible environmental and public health implications. Front Public Health 4:239. https://doi.org/10.3389/fpubh.2016.00239

  19. del Rio B, Dattwyler RJ, Aroso M, Neves V, Meirelles L, Seegers JFML, Gomes-Solecki M (2008) Oral immunization with recombinant Lactobacillus plantarum induces a protective immune response in mice with Lyme disease. Clin Vaccine Immunol CVI 15:1429–1435. https://doi.org/10.1128/CVI.00169-08

  20. Diuk-Wasser MA, Hoen AG, Cislo P, Brinkerhoff R, Hamer SA, Rowland M, Cortinas R, Vourc’h G, Melton F, Hickling GJ, Tsao JI, Bunikis J, Barbour AG, Kitron U, Piesman J, Fish D (2012) Human risk of infection with Borrelia burgdorferi, the Lyme disease agent, in eastern United States. Am J Trop Med Hyg 86:320–327. https://doi.org/10.4269/ajtmh.2012.11-0395

  21. Earnhart CG, Buckles EL, Marconi RT (2007) Development of an OspC-based tetravalent, recombinant, chimeric vaccinogen that elicits bactericidal antibody against diverse Lyme disease spirochete strains. Vaccine 25:466–480. https://doi.org/10.1016/j.vaccine.2006.07.052

  22. Earnhart CG, Marconi RT (2007) An octavalent Lyme disease vaccine induces antibodies that recognize all incorporated OspC type-specific sequences. Hum Vaccin 3:281–289. https://doi.org/10.4161/hv.4661

  23. Ebady R, Niddam AF, Boczula AE, Kim YR, Gupta N, Tang TT, Odisho T, Zhi H, Simmons CA, Skare JT, Moriarty TJ (2016) Biomechanics of Borrelia burgdorferi vascular interactions. Cell Rep 16:2593–2604. https://doi.org/10.1016/j.celrep.2016.08.013

  24. Feng J, Wang T, Shi W, Zhang S, Sullivan D, Auwaerter PG, Zhang Y (2014) Identification of novel activity against Borrelia burgdorferi persisters using an FDA approved drug library. Emerg Microbes Infect 3:e49. https://doi.org/10.1038/emi.2014.53

  25. Feng J, Weitner M, Shi W, Zhang S, Sullivan D, Zhang Y (2015) Identification of additional anti-persister activity against Borrelia burgdorferi from an FDA drug library. Antibiotics 4:397–410. https://doi.org/10.3390/antibiotics4030397

  26. Fikrig E, Barthold SW, Kantor FS, Flavell RA (1991) Protection of mice from Lyme borreliosis by oral vaccination with Escherichia coli expressing OspA. J Infect Dis 164:1224–1227. https://doi.org/10.1093/infdis/164.6.1224

  27. Fikrig E, Feng W, Barthold SW, Telford SR, Flavell RA (2000) Arthropod- and host-specific Borrelia burgdorferi bbk32 expression and the inhibition of spirochete transmission. J Immunol Baltim Md 1950 164:5344–5351. https://doi.org/10.4049/jimmunol.164.10.5344

  28. Fikrig E, Pal U, Chen M, Anderson JF, Flavell RA (2004) OspB antibody prevents Borrelia burgdorferi colonization of Ixodes scapularis. Infect Immun 72:1755–1759. https://doi.org/10.1128/iai.72.3.1755-1759.2004

  29. Gilmore RD, Kappel KJ, Dolan MC, Burkot TR, Johnson BJ (1996) Outer surface protein C (OspC), but not P39, is a protective immunogen against a tick-transmitted Borrelia burgdorferi challenge: evidence for a conformational protective epitope in OspC. Infect Immun 64:2234–2239

  30. Gomes-Solecki MJC, Brisson DR, Dattwyler RJ (2006) Oral vaccine that breaks the transmission cycle of the Lyme disease spirochete can be delivered via bait. Vaccine 24:4440–4449. https://doi.org/10.1016/j.vaccine.2005.08.089

  31. Grimm D, Tilly K, Byram R, Stewart PE, Krum JG, Bueschel DM, Schwan TG, Policastro PF, Elias AF, Rosa PA (2004) Outer-surface protein C of the Lyme disease spirochete: a protein induced in ticks for infection of mammals. Proc Natl Acad Sci U S A 101:3142–3147. https://doi.org/10.1073/pnas.0306845101

  32. Hanson MS, Cassatt DR, Guo BP, Patel NK, McCarthy MP, Dorward DW, Höök M (1998) Active and passive immunity against Borrelia burgdorferi decorin binding protein a (DbpA) protects against infection. Infect Immun 66:2143–2153

  33. Hanson MS, Patel NK, Cassatt DR, Ulbrandt ND (2000) Evidence for vaccine synergy between Borrelia burgdorferi decorin binding protein a and outer surface protein a in the mouse model of Lyme borreliosis. Infect Immun 68:6457–6460

  34. Heikkilä T, Seppälä I, Saxén H, Panelius J, Peltomaa M, Julin T, Carlsson S-A, Lahdenne P (2002) Recombinant BBK32 protein in serodiagnosis of early and late Lyme borreliosis. J Clin Microbiol 40:1174–1180. https://doi.org/10.1128/JCM.40.4.1174-1180.2002

  35. Hinckley AF, Meek JI, Ray JAE, Niesobecki SA, Connally NP, Feldman KA, Jones EH, Backenson PB, White JL, Lukacik G, Kay AB, Miranda WP, Mead PS (2016) Effectiveness of residential acaricides to prevent Lyme and other tick-borne diseases in humans. J Infect Dis 214:182–188. https://doi.org/10.1093/infdis/jiv775

  36. Hovius JWR, de Jong MAWP, den Dunnen J, Litjens M, Fikrig E, van der Poll T, Gringhuis SI, Geijtenbeek TBH (2008) Salp15 binding to DC-SIGN inhibits cytokine expression by impairing both nucleosome remodeling and mRNA stabilization. PLoS Pathog 4:e31. https://doi.org/10.1371/journal.ppat.0040031

  37. Hubálek Z (2009) Epidemiology of Lyme borreliosis. Curr Probl Dermatol 37:31–50. https://doi.org/10.1159/000213069

  38. Humair PF, Rais O, Gern L (1999) Transmission of Borrelia afzelii from Apodemus mice and Clethrionomys voles to Ixodes ricinus ticks: differential transmission pattern and overwintering maintenance. Parasitology 118(Pt 1):33–42. https://doi.org/10.1017/s0031182098003564

  39. Jore S, Vanwambeke SO, Viljugrein H, Isaksen K, Kristoffersen AB, Woldehiwet Z, Johansen B, Brun E, Brun-Hansen H, Westermann S, Larsen I-L, Ytrehus B, Hofshagen M (2014) Climate and environmental change drives Ixodes ricinus geographical expansion at the northern range margin. Parasit Vectors 7:11. https://doi.org/10.1186/1756-3305-7-11

  40. Jore S, Viljugrein H, Hofshagen M, Brun-Hansen H, Kristoffersen AB, Nygård K, Brun E, Ottesen P, Sævik BK, Ytrehus B (2011) Multi-source analysis reveals latitudinal and altitudinal shifts in range of Ixodes ricinus at its northern distribution limit. Parasit Vectors 4:84. https://doi.org/10.1186/1756-3305-4-84

  41. Jutras BL, Lochhead RB, Kloos ZA, Biboy J, Strle K, Booth CJ, Govers SK, Gray J, Schumann P, Vollmer W, Bockenstedt LK, Steere AC, Jacobs-Wagner C (2019) Borrelia burgdorferi peptidoglycan is a persistent antigen in patients with Lyme arthritis. Proc Natl Acad Sci U S A 116:13498–13507. https://doi.org/10.1073/pnas.1904170116

  42. Kalmár Z, Mihalca AD, Dumitrache MO, Gherman CM, Magdaş C, Mircean V, Oltean M, Domşa C, Matei IA, Mărcuţan DI, Sándor AD, D’Amico G, Paştiu A, Györke A, Gavrea R, Marosi B, Ionică A, Burkhardt E, Toriay H, Cozma V (2013) Geographical distribution and prevalence of Borrelia burgdorferi genospecies in questing Ixodes ricinus from Romania: a countrywide study. Ticks Tick-Borne Dis 4:403–408. https://doi.org/10.1016/j.ttbdis.2013.04.007

  43. Keirans JE, Clifford CM, Hoogstraal H, Easton ER (1976) Discovery of Nuttalliella namaqua Bedford (Acarina: Ixodoidea: Nuttalliellidae) in Tanzania and redescription of the female based on scanning electron microcopy. Ann Entomol Soc Am 69:926–932. https://doi.org/10.1093/aesa/69.5.926

  44. Krupka I, Straubinger RK (2010) Lyme borreliosis in dogs and cats: background, diagnosis, treatment and prevention of infections with Borrelia burgdorferi sensu stricto. Vet Clin North Am Small Anim Pract 40:1103–1119. https://doi.org/10.1016/j.cvsm.2010.07.011

  45. Kuehn BM (2013) CDC estimates 300,000 US cases of Lyme disease annually. JAMA 310:1110. https://doi.org/10.1001/jama.2013.278331

  46. Kung F, Kaur S, Smith AA, Yang X, Wilder CN, Sharma K, Buyuktanir O, Pal U (2016) A Borrelia burgdorferi surface-exposed transmembrane protein lacking detectable immune responses supports pathogen persistence and constitutes a vaccine target. J Infect Dis 213:1786–1795. https://doi.org/10.1093/infdis/jiw013

  47. Kunz SE, Kemp DH (1994) Insecticides and acaricides: resistance and environmental impact. Rev Sci Tech Int Off Epizoot 13:1249–1286. https://doi.org/10.20506/rst.13.4.816

  48. Lahdenne P, Sarvas H, Kajanus R, Eholuoto M, Sillanpää H, Seppälä I (2006) Antigenicity of borrelial protein BBK32 fragments in early Lyme borreliosis. J Med Microbiol 55:1499–1504. https://doi.org/10.1099/jmm.0.46621-0

  49. Lascher S, Goldmann DR (2016) Efficacy of antibiotic prophylaxis for the prevention of Lyme disease after tick bite. Am J Med 129:935–937. https://doi.org/10.1016/j.amjmed.2016.05.011

  50. Lawrenz MB, Wooten RM, Norris SJ (2004) Effects of vlsE complementation on the infectivity of Borrelia burgdorferi lacking the linear plasmid lp28-1. Infect Immun 72:6577–6585. https://doi.org/10.1128/IAI.72.11.6577-6585.2004

  51. Lee J, Wormser GP (2008) Pharmacodynamics of doxycycline for chemoprophylaxis of Lyme disease: preliminary findings and possible implications for other antimicrobials. Int J Antimicrob Agents 31:235–239. https://doi.org/10.1016/j.ijantimicag.2007.11.011

  52. Ljøstad U, Skogvoll E, Eikeland R, Midgard R, Skarpaas T, Berg A, Mygland A (2008) Oral doxycycline versus intravenous ceftriaxone for European Lyme neuroborreliosis: a multicentre, non-inferiority, double-blind, randomised trial. Lancet Neurol 7:690–695. https://doi.org/10.1016/S1474-4422(08)70119-4

  53. Luke CJ, Huebner RC, Kasmiersky V, Barbour AG (1997) Oral delivery of purified lipoprotein OspA protects mice from systemic infection with Borrelia burgdorferi. Vaccine 15:739–746. https://doi.org/10.1016/s0264-410x(97)00219-3

  54. Margos G, Fingerle V, Reynolds S (2019) Borrelia bavariensis: vector switch, niche invasion, and geographical spread of a tick-borne bacterial parasite. Front Ecol Evol 7:401. https://doi.org/10.3389/fevo.2019.00401

  55. Melo R, Richer L, Johnson DL, Gomes-Solecki M (2016) Oral immunization with OspC does not prevent tick-borne Borrelia burgdorferi infection. PLoS One 11:e0151850. https://doi.org/10.1371/journal.pone.0151850

  56. Middelveen MJ, Sapi E, Burke J, Filush KR, Franco A, Fesler MC, Stricker RB (2018) Persistent Borrelia infection in patients with ongoing symptoms of Lyme disease. Healthcare 6:2. https://doi.org/10.3390/healthcare6020033

  57. Montgomery RR, Schreck K, Wang X, Malawista SE (2006) Human neutrophil calprotectin reduces the susceptibility of Borrelia burgdorferi to penicillin. Infect Immun 74:2468–2472. https://doi.org/10.1128/IAI.74.4.2468-2472.2006

  58. Moriarty TJ, Norman MU, Colarusso P, Bankhead T, Kubes P, Chaconas G (2008) Real-time high resolution 3D imaging of the Lyme disease spirochete adhering to and escaping from the vasculature of a living host. PLoS Pathog 4:e1000090. https://doi.org/10.1371/journal.ppat.1000090

  59. Nadelman RB, Nowakowski J, Fish D, Falco RC, Freeman K, McKenna D, Welch P, Marcus R, Agüero-Rosenfeld ME, Dennis DT, Wormser GP, Tick Bite Study Group (2001) Prophylaxis with single-dose doxycycline for the prevention of Lyme disease after an Ixodes scapularis tick bite. N Engl J Med 345:79–84. https://doi.org/10.1056/NEJM200107123450201

  60. Narasimhan S, Schuijt TJ, Abraham NM, Rajeevan N, Coumou J, Graham M, Robson A, Wu M-J, Daffre S, Hovius JW, Fikrig E (2017) Modulation of the tick gut milieu by a secreted tick protein favors Borrelia burgdorferi colonization. Nat Commun 8:184. https://doi.org/10.1038/s41467-017-00208-0

  61. Nigrovic LE, Thompson KM (2007) The Lyme vaccine: a cautionary tale. Epidemiol Infect 135:1–8. https://doi.org/10.1017/S0950268806007096

  62. Norman MU, Moriarty TJ, Dresser AR, Millen B, Kubes P, Chaconas G (2008) Molecular mechanisms involved in vascular interactions of the Lyme disease pathogen in a living host. PLoS Pathog 4:e1000169. https://doi.org/10.1371/journal.ppat.1000169

  63. Nuttall PA (2019) Tick saliva and its role in pathogen transmission. Wien Klin Wochenschr:1–12. https://doi.org/10.1007/s00508-019-1500-y

  64. Nuttall PA, Labuda M (2004) Tick-host interactions: saliva-activated transmission. Parasitology 129(Suppl):S177–S189. https://doi.org/10.1017/s0031182004005633

  65. Pal U, Li X, Wang T, Montgomery RR, Ramamoorthi N, Desilva AM, Bao F, Yang X, Pypaert M, Pradhan D, Kantor FS, Telford S, Anderson JF, Fikrig E (2004) TROSPA, an Ixodes scapularis receptor for Borrelia burgdorferi. Cell 119:457–468. https://doi.org/10.1016/j.cell.2004.10.027

  66. Parola P, Raoult D (2001) Ticks and tickborne bacterial diseases in humans: an emerging infectious threat. Clin Infect Dis Off Publ Infect Dis Soc Am 32:897–928. https://doi.org/10.1086/319347

  67. Perez G, Bastian S, Agoulon A, Bouju A, Durand A, Faille F, Lebert I, Rantier Y, Plantard O, Butet A (2016) Effect of landscape features on the relationship between Ixodes ricinus ticks and their small mammal hosts. Parasit Vectors 9:20. https://doi.org/10.1186/s13071-016-1296-9

  68. Perner J, Kropáčková S, Kopáček P, Ribeiro JMC (2018) Sialome diversity of ticks revealed by RNAseq of single tick salivary glands. PLoS Negl Trop Dis 12:e0006410. https://doi.org/10.1371/journal.pntd.0006410

  69. Piesman J, Hojgaard A, Ullmann AJ, Dolan MC (2014) Efficacy of an experimental azithromycin cream for prophylaxis of tick-transmitted Lyme disease spirochete infection in a murine model. Antimicrob Agents Chemother 58:348–351. https://doi.org/10.1128/AAC.01932-13

  70. Pothineni VR, Wagh D, Babar MM, Inayathullah M, Solow-Cordero D, Kim K-M, Samineni AV, Parekh MB, Tayebi L, Rajadas J (2016) Identification of new drug candidates against Borrelia burgdorferi using high-throughput screening. Drug Des Devel Ther 10:1307–1322. https://doi.org/10.2147/DDDT.S101486

  71. Probert WS, Johnson BJ (1998) Identification of a 47 kDa fibronectin-binding protein expressed by Borrelia burgdorferi isolate B31. Mol Microbiol 30:1003–1015

  72. Ramamoorthi N, Narasimhan S, Pal U, Bao F, Yang XF, Fish D, Anguita J, Norgard MV, Kantor FS, Anderson JF, Koski RA, Fikrig E (2005) The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature 436:573–577. https://doi.org/10.1038/nature03812

  73. Rand PW, Lubelczyk C, Holman MS, Lacombe EH, Smith RP (2004) Abundance of Ixodes scapularis (Acari: Ixodidae) after the complete removal of deer from an isolated offshore island, endemic for Lyme disease. J Med Entomol 41:779–784. https://doi.org/10.1603/0022-2585-41.4.779

  74. Rego ROM, Trentelman JJA, Anguita J, Nijhof AM, Sprong H, Klempa B, Hajdusek O, Tomás-Cortázar J, Azagi T, Strnad M, Knorr S, Sima R, Jalovecka M, Fumačová Havlíková S, Ličková M, Sláviková M, Kopacek P, Grubhoffer L, Hovius JW (2019) Counterattacking the tick bite: towards a rational design of anti-tick vaccines targeting pathogen transmission. Parasit Vectors 12:229. https://doi.org/10.1186/s13071-019-3468-x

  75. Ribeiro JM, Mather TN, Piesman J, Spielman A (1987) Dissemination and salivary delivery of Lyme disease spirochetes in vector ticks (Acari: Ixodidae). J Med Entomol 24:201–205. https://doi.org/10.1093/jmedent/24.2.201

  76. Richer LM, Brisson D, Melo R, Ostfeld RS, Zeidner N, Gomes-Solecki M (2014) Reservoir targeted vaccine against Borrelia burgdorferi: a new strategy to prevent Lyme disease transmission. J Infect Dis 209:1972–1980. https://doi.org/10.1093/infdis/jiu005

  77. Rollend L, Fish D, Childs JE (2013) Transovarial transmission of Borrelia spirochetes by Ixodes scapularis: a summary of the literature and recent observations. Ticks Tick-Borne Dis 4:46–51. https://doi.org/10.1016/j.ttbdis.2012.06.008

  78. Rudenko N, Golovchenko M, Kybicova K, Vancova M (2019) Metamorphoses of Lyme disease spirochetes: phenomenon of Borrelia persisters. Parasit Vectors 12:237. https://doi.org/10.1186/s13071-019-3495-7

  79. Rudenko N, Golovchenko M, Vancova M, Clark K, Grubhoffer L, Oliver JH (2016) Isolation of live Borrelia burgdorferi sensu lato spirochaetes from patients with undefined disorders and symptoms not typical for Lyme borreliosis. Clin Microbiol infect 22:267–e9–15. https://doi.org/10.1016/j.cmi.2015.11.009

  80. Schröder NWJ, Schombel U, Heine H, Göbel UB, Zähringer U, Schumann RR (2003) Acylated cholesteryl galactoside as a novel immunogenic motif in Borrelia burgdorferi sensu stricto. J Biol Chem 278:33645–33653. https://doi.org/10.1074/jbc.M305799200

  81. Schuijt TJ, Coumou J, Narasimhan S, Dai J, Deponte K, Wouters D, Brouwer M, Oei A, Roelofs JJTH, van Dam AP, van der Poll T, Van’t Veer C, Hovius JW, Fikrig E (2011) A tick mannose-binding lectin inhibitor interferes with the vertebrate complement cascade to enhance transmission of the Lyme disease agent. Cell Host Microbe 10:136–146. https://doi.org/10.1016/j.chom.2011.06.010

  82. Schwameis M, Kündig T, Huber G, von Bidder L, Meinel L, Weisser R, Aberer E, Härter G, Weinke T, Jelinek T, Fätkenheuer G, Wollina U, Burchard G-D, Aschoff R, Nischik R, Sattler G, Popp G, Lotte W, Wiechert D, Eder G, Maus O, Staubach-Renz P, Gräfe A, Geigenberger V, Naudts I, Sebastian M, Reider N, Weber R, Heckmann M, Reisinger EC, Klein G, Wantzen J, Jilma B (2017) Topical azithromycin for the prevention of Lyme borreliosis: a randomised, placebo-controlled, phase 3 efficacy trial. Lancet Infect Dis 17:322–329. https://doi.org/10.1016/S1473-3099(16)30529-1

  83. Shaffer L (2019) Inner workings: Lyme disease vaccines face familiar challenges, both societal and scientific. Proc Natl Acad Sci U S A 116:19214–19217. https://doi.org/10.1073/pnas.1913923116

  84. Shapiro ED, Wormser GP (2017) Prophylaxis with topical azithromycin against Lyme borreliosis. Lancet Infect Dis 17:246–248. https://doi.org/10.1016/S1473-3099(16)30551-5

  85. Sharma B, Brown AV, Matluck NE, Hu LT, Lewis K (2015) Borrelia burgdorferi, the causative agent of Lyme disease, forms drug-tolerant persister cells. Antimicrob Agents Chemother 59:4616–4624. https://doi.org/10.1128/AAC.00864-15

  86. Shi J, Hu Z, Deng F, Shen S (2018) Tick-borne viruses. Virol Sin 33:21–43. https://doi.org/10.1007/s12250-018-0019-0

  87. Slunge D, Boman A (2018) Learning to live with ticks? The role of exposure and risk perceptions in protective behaviour against tick-borne diseases. PLoS One 13:6. https://doi.org/10.1371/journal.pone.0198286

  88. Smith R, Takkinen J (2006) Lyme borreliosis: Europe-wide coordinated surveillance and action needed? Euro Surveill Bull Eur Sur Mal Transm Eur Commun Dis Bull 11:E060622.1

  89. Sprong H, Trentelman J, Seemann I, Grubhoffer L, Rego RO, Hajdušek O, Kopáček P, Šíma R, Nijhof AM, Anguita J, Winter P, Rotter B, Havlíková S, Klempa B, Schetters TP, Hovius JW (2014) ANTIDotE: anti-tick vaccines to prevent tick-borne diseases in Europe. Parasit Vectors 7:77. https://doi.org/10.1186/1756-3305-7-77

  90. Stanek G, Strle F (2018) Lyme borreliosis-from tick bite to diagnosis and treatment. FEMS Microbiol Rev 42:233–258. https://doi.org/10.1093/femsre/fux047

  91. Stanek G, Wormser GP, Gray J, Strle F (2012) Lyme borreliosis. Lancet Lond Engl 379:461–473. https://doi.org/10.1016/S0140-6736(11)60103-7

  92. Steere AC (2001) Lyme disease. N Engl J Med 345:115–125. https://doi.org/10.1056/NEJM200107123450207

  93. Steere AC, Malawista SE, Snydman DR, Shope RE, Andiman WA, Ross MR, Steele FM (1977) Lyme arthritis: an epidemic of oligoarticular arthritis in children and adults in three Connecticut communities. Arthritis Rheum 20:7–17. https://doi.org/10.1002/art.1780200102

  94. Stricker RB, Middelveen MJ (2018) Better drugs for Lyme disease: focus on the spirochete. Infect Drug Resist 11:1437–1439. https://doi.org/10.2147/IDR.S176831

  95. Strnad M, Elsterová J, Schrenková J, Vancová M, Rego ROM, Grubhoffer L, Nebesářová J (2015) Correlative cryo-fluorescence and cryo-scanning electron microscopy as a straightforward tool to study host-pathogen interactions. Sci Rep 5:18029. https://doi.org/10.1038/srep18029

  96. Strnad M, Hönig V, Růžek D, Grubhoffer L, Rego ROM (2017) Europe-wide meta-analysis of Borrelia burgdorferi sensu lato prevalence in questing Ixodes ricinus ticks. Appl Environ Microbiol 83:15. https://doi.org/10.1128/AEM.00609-17

  97. Stübs G, Fingerle V, Wilske B, Göbel UB, Zähringer U, Schumann RR, Schröder NWJ (2009) Acylated cholesteryl galactosides are specific antigens of borrelia causing Lyme disease and frequently induce antibodies in late stages of disease. J Biol Chem 284:13326–13334. https://doi.org/10.1074/jbc.M809575200

  98. Tabor AE (2018) The enigma of identifying new cattle tick vaccine antigens. Ticks Tick-Borne Pathog. https://doi.org/10.5772/intechopen.81145

  99. Tanner T, Marks R (2008) Delivering drugs by the transdermal route: review and comment. Skin Res Technol Off J Int Soc Bioeng Skin ISBS Int Soc Digit Imaging Skin ISDIS Int Soc Skin Imaging ISSI 14:249–260. https://doi.org/10.1111/j.1600-0846.2008.00316.x

  100. Tappe J, Jordan D, Janecek E, Fingerle V, Strube C (2014) Revisited: Borrelia burgdorferi sensu lato infections in hard ticks (Ixodes ricinus) in the city of Hanover (Germany). Parasit Vectors 7:441. https://doi.org/10.1186/1756-3305-7-441

  101. Timmaraju VA, Theophilus PAS, Balasubramanian K, Shakih S, Luecke DF, Sapi E (2015) Biofilm formation by Borrelia burgdorferi sensu lato. FEMS Microbiol Lett 362:fnv120. https://doi.org/10.1093/femsle/fnv120

  102. van Duijvendijk G, Coipan C, Wagemakers A, Fonville M, Ersöz J, Oei A, Földvári G, Hovius J, Takken W, Sprong H (2016) Larvae of Ixodes ricinus transmit Borrelia afzelii and B. miyamotoi to vertebrate hosts. Parasit Vectors 9:97. https://doi.org/10.1186/s13071-016-1389-5

  103. Vancová M, Rudenko N, Vaněček J, Golovchenko M, Strnad M, Rego ROM, Tichá L, Grubhoffer L, Nebesářová J (2017) Pleomorphism and viability of the Lyme disease pathogen Borrelia burgdorferi exposed to physiological stress conditions: a correlative cryo-fluorescence and cryo-scanning electron microscopy study. Front Microbiol 8:596. https://doi.org/10.3389/fmicb.2017.00596

  104. Vechtova P, Sterbova J, Sterba J, Vancova M, Rego ROM, Selinger M, Strnad M, Golovchenko M, Rudenko N, Grubhoffer L (2018) A bite so sweet: the glycobiology interface of tick-host-pathogen interactions. Parasit Vectors 11:594. https://doi.org/10.1186/s13071-018-3062-7

  105. Wagemakers A, Coumou J, Schuijt TJ, Oei A, Nijhof AM, van ‘t Veer C, van der Poll T, Bins AD, Hovius JWR (2016) An Ixodes ricinus tick salivary lectin pathway inhibitor protects Borrelia burgdorferi sensu lato from human complement. Vector Borne Zoonotic Dis Larchmt N 16:223–228. https://doi.org/10.1089/vbz.2015.1901

  106. Walker AR (2014) Ticks and associated diseases: a retrospective review. Med Vet Entomol 28(Suppl 1):1–5. https://doi.org/10.1111/mve.12031

  107. Wallich R, Siebers A, Jahraus O, Brenner C, Stehle T, Simon MM (2001) DNA vaccines expressing a fusion product of outer surface proteins a and C from Borrelia burgdorferi induce protective antibodies suitable for prophylaxis but not for resolution of Lyme disease. Infect Immun 69:2130–2136. https://doi.org/10.1128/IAI.69.4.2130-2136.2001

  108. Wang D, Bayliss S, Meads C (2011) Palivizumab for immunoprophylaxis of respiratory syncytial virus (RSV) bronchiolitis in high-risk infants and young children: a systematic review and additional economic modelling of subgroup analyses. Health Technol assess winch Engl 15:iii–iv–i1–124. https://doi.org/10.3310/hta15050

  109. Wang Y, Kern A, Boatright NK, Schiller ZA, Sadowski A, Ejemel M, Souders CA, Reimann KA, Hu L, Thomas WD, Klempner MS (2016) Pre-exposure prophylaxis with OspA-specific human monoclonal antibodies protects mice against tick transmission of Lyme disease spirochetes. J Infect Dis 214:205–211. https://doi.org/10.1093/infdis/jiw151

  110. Warshafsky S, Lee DH, Francois LK, Nowakowski J, Nadelman RB, Wormser GP (2010) Efficacy of antibiotic prophylaxis for the prevention of Lyme disease: an updated systematic review and meta-analysis. J Antimicrob Chemother 65:1137–1144. https://doi.org/10.1093/jac/dkq097

  111. Wilske B, Preac-Mursic V, Göbel UB, Graf B, Jauris S, Soutschek E, Schwab E, Zumstein G (1993) An OspA serotyping system for Borrelia burgdorferi based on reactivity with monoclonal antibodies and OspA sequence analysis. J Clin Microbiol 31:340–350

  112. Wormser GP, Shapiro ED, Strle F (2017) Studies that report unexpected positive blood cultures for Lyme Borrelia-- are they valid? Diagn Microbiol Infect Dis 89:178–181. https://doi.org/10.1016/j.diagmicrobio.2017.07.009

  113. Wressnigg N, Pöllabauer E-M, Aichinger G, Portsmouth D, Löw-Baselli A, Fritsch S, Livey I, Crowe BA, Schwendinger M, Brühl P, Pilz A, Dvorak T, Singer J, Firth C, Luft B, Schmitt B, Zeitlinger M, Müller M, Kollaritsch H, Paulke-Korinek M, Esen M, Kremsner PG, Ehrlich HJ, Barrett PN (2013) Safety and immunogenicity of a novel multivalent OspA vaccine against Lyme borreliosis in healthy adults: a double-blind, randomised, dose-escalation phase 1/2 trial. Lancet Infect Dis 13:680–689. https://doi.org/10.1016/S1473-3099(13)70110-5

  114. Zhong W, Gern L, Stehle T, Museteanu C, Kramer M, Wallich R, Simon MM (1999) Resolution of experimental and tick-borne Borrelia burgdorferi infection in mice by passive, but not active immunization using recombinant OspC. Eur J Immunol 29:946–957. https://doi.org/10.1002/(SICI)1521-4141(199903)29:03<946::AID-IMMU946>3.0.CO;2-P

  115. Zingg S, Dolle P, Voordouw MJ, Kern M (2018) The negative effect of wood ant presence on tick abundance. Parasit Vectors 11:164. https://doi.org/10.1186/s13071-018-2712-0

Download references

Funding

This study was supported by the Czech Science Foundation grant 17-21244S and European Union FP7 project ANTIDotE (602272–2).

Author information

MS took the lead role in manuscript preparation with direction and assistance from LG and ROMR.

Correspondence to Martin Strnad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Strnad, M., Grubhoffer, L. & Rego, R.O. Novel targets and strategies to combat borreliosis. Appl Microbiol Biotechnol 104, 1915–1925 (2020). https://doi.org/10.1007/s00253-020-10375-8

Download citation

Keywords

  • Lyme borreliosis
  • Vaccine candidates
  • Anti-tick strategies
  • Human pathogen
  • Public health