Advertisement

Antibody glycosylation: impact on antibody drug characteristics and quality control

  • Ziyan Wang
  • Jianwei Zhu
  • Huili LuEmail author
Mini-Review
  • 36 Downloads

Abstract

Glycosylation is a common post-translational modification that occurs during the production of antibodies. Glycans attached to antibodies play an important role in the pharmacokinetics, efficacy, and safety of therapeutic antibodies. In the modern antibody industry, it is important to adjust and control glycosylation modifications. The formation of specific sugar structures via glycosylation engineering is constantly evolving. This review summarizes the recent progress in glycosylation modifications, as well as the major discoveries and current understanding of the mechanisms involved, to provide new ideas for the research and development of therapeutic antibodies.

Keywords

Glycosylation Antibodies Pharmacokinetics Analysis 

Notes

Funding

This work was funded by the Science and Technology Commission of Shanghai Municipality (No. 17431904500 and 17ZR1413700 to Lu H.).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Adamczyk B, Tharmalingam-Jaikaran T, Schomberg M, Szekrenyes A, Kelly RM, Karlsson NG, Guttman A, Rudd PM (2014) Comparison of separation techniques for the elucidation of IgG N-glycans pooled from healthy mammalian species. Carbohydr Res 389:174–185.  https://doi.org/10.1016/j.carres.2014.01.018 CrossRefPubMedGoogle Scholar
  2. Aghamohseni H, Ohadi K, Spearman M, Krahn N, Moo-Young M, Scharer JM, Butler M, Budman HM (2014) Effects of nutrient levels and average culture pH on the glycosylation pattern of camelid-humanized monoclonal antibody. J Biotechnol 186:98–109.  https://doi.org/10.1016/j.jbiotec.2014.05.024 CrossRefPubMedGoogle Scholar
  3. Alisson-Silva F, Kawanishi K, Varki A (2016) Human risk of diseases associated with red meat intake: analysis of current theories and proposed role for metabolic incorporation of a non-human sialic acid. Mol Asp Med 51:16–30.  https://doi.org/10.1016/j.mam.2016.07.002 CrossRefGoogle Scholar
  4. Azadi P, Heiss C (2009) Mass spectrometry of N-linked glycans. Methods Mol Biol 534:37–51.  https://doi.org/10.1007/978-1-59745-022-5_3 CrossRefPubMedGoogle Scholar
  5. Backliwal G, Hildinger M, Chenuet S, Wulhfard S, De Jesus M, Wurm FM (2008) Rational vector design and multi-pathway modulation of HEK 293E cells yield recombinant antibody titers exceeding 1 g/l by transient transfection under serum-free conditions. Nucleic Acids Res 36(15):e96.  https://doi.org/10.1093/nar/gkn423 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Barallobre-Barreiro J, Baig F, Fava M, Yin X, Mayr M (2017) Glycoproteomics of the extracellular matrix: a method for intact glycopeptide analysis using mass spectrometry. J Vis Exp 122.  https://doi.org/10.3791/55674
  7. Bas M, Terrier A, Jacque E, Dehenne A, Pochet-Beghin V, Beghin C, Dezetter AS, Dupont G, Engrand A, Beaufils B, Mondon P, Fournier N, de Romeuf C, Jorieux S, Fontayne A, Mars LT, Monnet C (2019) Fc Sialylation prolongs serum half-life of therapeutic antibodies. J Immunol 202(5):1582–1594.  https://doi.org/10.4049/jimmunol.1800896 CrossRefPubMedGoogle Scholar
  8. Behnken HN, Ruthenbeck A, Schulz JM, Meyer B (2014) Glycan analysis of prostate specific antigen (PSA) directly from the intact glycoprotein by HR-ESI/TOF-MS. J Proteome Res 13(2):997–1001.  https://doi.org/10.1021/pr400999y CrossRefPubMedGoogle Scholar
  9. Billioud V, Sandborn WJ, Peyrin-Biroulet L (2011) Loss of response and need for adalimumab dose intensification in Crohn's disease: a systematic review. Am J Gastroenterol 106(4):674–684.  https://doi.org/10.1038/ajg.2011.60 CrossRefPubMedGoogle Scholar
  10. Bloem K, Vuist IM, Plas AJVD, Knippels LMJ, Garssen J, Garcíavallejo JJ, Vliet SJV, Kooyk YV (2013) Ligand binding and signaling of dendritic cell immunoreceptor (DCIR) is modulated by the glycosylation of the carbohydrate recognition domain. PLoS One 8(6):e66266CrossRefGoogle Scholar
  11. Borrok MJ, Jung ST, Kang TH, Monzingo AF, Georgiou G (2012) Revisiting the role of glycosylation in the structure of human IgG fc. ACS Chem Biol 7(9):1596–1602.  https://doi.org/10.1021/cb300130k CrossRefPubMedPubMedCentralGoogle Scholar
  12. Brightbill H, Lin Y, Lin Z, Tan M, Meng Y, Balazs M, Chung S, Wu L (2014) Quilizumab is an afucosylated humanized anti-M1 prime therapeutic antibody. Clin Anti-Inflamm Anti-Allerg Drug 1(1):24–31.  https://doi.org/10.2174/22127038114019990003 CrossRefGoogle Scholar
  13. Buettner MJ, Shah SR, Saeui CT, Ariss R, Yarema KJ (2018) Improving immunotherapy through glycodesign. Front Immunol 9:2485.  https://doi.org/10.3389/fimmu.2018.02485 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cao L, Diedrich JK, Ma Y, Wang N, Pauthner M, Park SR, Delahunty CM, McLellan JS, Burton DR, Yates JR, Paulson JC (2018) Global site-specific analysis of glycoprotein N-glycan processing. Nat Protoc 13(6):1196–1212.  https://doi.org/10.1038/nprot.2018.024 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cao L, Zhang Y, Chen L, Shen A, Zhang X, Ren S, Gu J, Yu L, Liang X (2014) Sample preparation for mass spectrometric analysis of human serum N-glycans using hydrophilic interaction chromatography-based solid phase extraction. Analyst 139(18):4538–4546.  https://doi.org/10.1039/c4an00660g CrossRefPubMedGoogle Scholar
  16. Chen WC, Murawsky CM (2018) Strategies for generating diverse antibody repertoires using transgenic animals expressing human antibodies. Front Immunol 9:460.  https://doi.org/10.3389/fimmu.2018.00460 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chung CH, Mirakhur B, Chan E, Le QT, Berlin J, Morse M, Murphy BA, Satinover SM, Hosen J, Mauro D, Slebos RJ, Zhou Q, Gold D, Hatley T, Hicklin DJ, Platts-Mills TA (2008) Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med 358(11):1109–1117.  https://doi.org/10.1056/NEJMoa074943 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Chung CY, Wang Q, Yang S, Yin B, Zhang H, Betenbaugh M (2017) Integrated genome and protein editing swaps alpha-2,6 sialylation for alpha-2,3 Sialic acid on recombinant antibodies from CHO. Biotechnol J 12(2).  https://doi.org/10.1002/biot.201600502 CrossRefGoogle Scholar
  19. Cymer F, Beck H, Rohde A, Reusch D (2018) Therapeutic monoclonal antibody N-glycosylation - structure, function and therapeutic potential. Biologicals 52:1–11.  https://doi.org/10.1016/j.biologicals.2017.11.001 CrossRefPubMedGoogle Scholar
  20. Dashivets T, Thomann M, Rueger P, Knaupp A, Buchner J, Schlothauer T (2015) Multi-angle effector function analysis of human monoclonal IgG glycovariants. PLoS One 10(12):e0143520.  https://doi.org/10.1371/journal.pone.0143520 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dekkers G, Treffers L, Plomp R, Bentlage AEH, de Boer M, Koeleman CAM, Lissenberg-Thunnissen SN, Visser R, Brouwer M, Mok JY, Matlung H, van den Berg TK, van Esch WJE, Kuijpers TW, Wouters D, Rispens T, Wuhrer M, Vidarsson G (2017) Decoding the human immunoglobulin G-glycan repertoire reveals a spectrum of fc-receptor- and complement-mediated-effector activities. Front Immunol 8:877.  https://doi.org/10.3389/fimmu.2017.00877 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Dotz V, Haselberg R, Shubhakar A, Kozak RP, Falck D, Rombouts Y, Reusch D, Somsen GW, Fernandes DL, Wuhrer M (2015) Mass spectrometry for glycosylation analysis of biopharmaceuticals. Trac-Trend Anal Chem 73:1–9.  https://doi.org/10.1016/j.trac.2015.04.024 CrossRefGoogle Scholar
  23. Eschwege V, Yelnik CM, Zuily S, Wahl D (2018) Brief report on the 10th meeting of the European forum on antiphospholipid antibodies. Curr Rheumatol Rep 20(10) doi:ARTN 63 https://doi.org/10.1007/s11926-018-0767-8
  24. Ferrara C, Brunker P, Suter T, Moser S, Puntener U, Umana P (2006) Modulation of therapeutic antibody effector functions by glycosylation engineering: influence of Golgi enzyme localization domain and co-expression of heterologous beta1, 4-N-acetylglucosaminyltransferase III and Golgi alpha-mannosidase II. Biotechnol Bioeng 93(5):851–861.  https://doi.org/10.1002/bit.20777 CrossRefPubMedGoogle Scholar
  25. Gao B, Long C, Lee W, Zhang Z, Gao X, Landsittel D, Ezzelarab M, Ayares D, Huang Y, Cooper DKC, Wang Y, Hara H (2017) Anti-Neu5Gc and anti-non-Neu5Gc antibodies in healthy humans. PLoS One 12(7):e0180768.  https://doi.org/10.1371/journal.pone.0180768 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Garcia-Aguilar T, Espinosa-Cueto P, Magallanes-Puebla A, Mancilla R (2016) The mannose receptor is involved in the phagocytosis of mycobacteria-induced apoptotic cells. J Immunol Res 2016:3845247.  https://doi.org/10.1155/2016/3845247 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Geyer H, Geyer R (2006) Strategies for analysis of glycoprotein glycosylation. Biochim Biophys Acta 1764(12):1853–1869.  https://doi.org/10.1016/j.bbapap.2006.10.007 CrossRefPubMedGoogle Scholar
  28. Giddens JP, Wang LX (2015) Chemoenzymatic glyco-engineering of monoclonal antibodies. Methods Mol Biol 1321:375–387.  https://doi.org/10.1007/978-1-4939-2760-9_25 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Gisbert JP, Panes J (2009) Loss of response and requirement of infliximab dose intensification in Crohn’s disease: a review. Am J Gastroenterol 104(3):760–767.  https://doi.org/10.1038/ajg.2008.88 CrossRefPubMedGoogle Scholar
  30. Goetze AM, Liu YD, Zhang Z, Shah B, Lee E, Bondarenko PV, Flynn GC (2011) High-mannose glycans on the Fc region of therapeutic IgG antibodies increase serum clearance in humans. Glycobiology 21(7):949–959.  https://doi.org/10.1093/glycob/cwr027 CrossRefPubMedGoogle Scholar
  31. Gong Q, Hazen M, Marshall B, Crowell SR, Ou Q, Wong AW, Phung W, Vernes JM, Meng YG, Tejada M, Andersen D, Kelley RF (2016) Increased in vivo effector function of human IgG4 isotype antibodies through afucosylation. MAbs 8(6):1098–1106.  https://doi.org/10.1080/19420862.2016.1189049 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Gramer MJ, Eckblad JJ, Donahue R, Brown J, Shultz C, Vickerman K, Priem P, van den Bremer ET, Gerritsen J, van Berkel PH (2011) Modulation of antibody galactosylation through feeding of uridine, manganese chloride, and galactose. Biotechnol Bioeng 108(7):1591–1602.  https://doi.org/10.1002/bit.23075 CrossRefPubMedGoogle Scholar
  33. Ha S, Wang Y, Rustandi RR (2011) Biochemical and biophysical characterization of humanized IgG1 produced in Pichia pastoris. MAbs 3(5):453–460.  https://doi.org/10.4161/mabs.3.5.16891 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hayes JM, Frostell A, Karlsson R, Muller S, Martin SM, Pauers M, Reuss F, Cosgrave EF, Anneren C, Davey GP, Rudd PM (2017) Identification of Fc gamma receptor glycoforms that produce differential binding kinetics for rituximab. Mol Cell Proteomics 16(10):1770–1788.  https://doi.org/10.1074/mcp.M117.066944 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Higel F, Seidl A, Sorgel F, Friess W (2016) N-glycosylation heterogeneity and the influence on structure, function and pharmacokinetics of monoclonal antibodies and fc fusion proteins. Eur J Pharm Biopharm 100:94–100.  https://doi.org/10.1016/j.ejpb.2016.01.005 CrossRefPubMedGoogle Scholar
  36. Hodoniczky J, Zheng YZ, James DC (2010) Control of recombinant monoclonal antibody effector functions by fc N -glycan remodeling in vitro. Biotechnol Prog 21(6):1644–1652CrossRefGoogle Scholar
  37. Hristodorov D, Fischer R, Joerissen H, Muller-Tiemann B, Apeler H, Linden L (2013) Generation and comparative characterization of glycosylated and aglycosylated human IgG1 antibodies. Mol Biotechnol 53(3):326–335.  https://doi.org/10.1007/s12033-012-9531-x CrossRefPubMedGoogle Scholar
  38. Hurtado-Guerrero R, Davies GJ (2012) Recent structural and mechanistic insights into post-translational enzymatic glycosylation. Curr Opin Chem Biol 16(5–6):479–487.  https://doi.org/10.1016/j.cbpa.2012.10.013 CrossRefPubMedGoogle Scholar
  39. Janinbussat MC, Tonini L, Huillet C, Colas O, Klinguerhamour C, Corvaïa N, Beck A (2013) Cetuximab fab and fc N-glycan fast characterization using IdeS digestion and liquid chromatography coupled to electrospray ionization mass spectrometry. Methods Mol Biol 988:93CrossRefGoogle Scholar
  40. Jefferis R (2009) Recombinant antibody therapeutics: the impact of glycosylation on mechanisms of action. Trends Pharmacol Sci 30(7):356–362.  https://doi.org/10.1016/j.tips.2009.04.007 CrossRefPubMedGoogle Scholar
  41. Jennewein MF, Alter G (2017) The immunoregulatory roles of antibody glycosylation. Trends Immunol 38(5):358–372.  https://doi.org/10.1016/j.it.2017.02.004 CrossRefPubMedGoogle Scholar
  42. Kelly RM, Kowle RL, Lian Z, Strifler BA, Witcher DR, Parekh BS, Wang T, Frye CC (2018) Modulation of IgG1 immunoeffector function by glycoengineering of the GDP-fucose biosynthesis pathway. Biotechnol Bioeng 115(3):705–718.  https://doi.org/10.1002/bit.26496 CrossRefPubMedGoogle Scholar
  43. Klapoetke S, Zhang J, Becht S, Gu X, Ding X (2010) The evaluation of a novel approach for the profiling and identification of N-linked glycan with a procainamide tag by HPLC with fluorescent and mass spectrometric detection. J Pharm Biomed Anal 53(3):315–324.  https://doi.org/10.1016/j.jpba.2010.03.045 CrossRefPubMedGoogle Scholar
  44. Kozak RP, Tortosa CB, Fernandes DL, Spencer DI (2015) Comparison of procainamide and 2-aminobenzamide labeling for profiling and identification of glycans by liquid chromatography with fluorescence detection coupled to electrospray ionization-mass spectrometry. Anal Biochem 486:38–40.  https://doi.org/10.1016/j.ab.2015.06.006 CrossRefPubMedGoogle Scholar
  45. Kurogochi M, Mori M, Osumi K, Tojino M, Sugawara S, Takashima S, Hirose Y, Tsukimura W, Mizuno M, Amano J, Matsuda A, Tomita M, Takayanagi A, Shoda S, Shirai T (2015) Glycoengineered monoclonal antibodies with homogeneous glycan (M3, G0, G2, and A2) using a chemoenzymatic approach have different affinities for FcgammaRIIIa and variable antibody-dependent cellular cytotoxicity activities. PLoS One 10(7):e0132848.  https://doi.org/10.1371/journal.pone.0132848 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Kussmann M, Nordhoff E, RahbekNielsen H, Haebel S, RosselLarsen M, Jakobsen L, Gobom J, Mirgorodskaya E, KrollKristensen A, Palm L, Roepstorff P (1997) Matrix-assisted laser desorption/ionization mass spectrometry sample preparation techniques designed for various peptide and protein analytes. J Mass Spectrom 32(6):593–601CrossRefGoogle Scholar
  47. Lauber MA, Yu YQ, Brousmiche DW, Hua Z, Koza SM, Magnelli P, Guthrie E, Taron CH, Fountain KJ (2015) Rapid preparation of released N-Glycans for HILIC analysis using a labeling reagent that facilitates sensitive fluorescence and ESI-MS detection. Anal Chem 87(10):5401–5409.  https://doi.org/10.1021/acs.analchem.5b00758 CrossRefPubMedGoogle Scholar
  48. Lee SJ, Evers S, Roeder D, Parlow AF, Risteli J, Risteli L, Lee YC, Feizi T, Langen H, Nussenzweig MC (2002) Mannose receptor-mediated regulation of serum glycoprotein homeostasis. Science 295(5561):1898–1901.  https://doi.org/10.1126/science.1069540 CrossRefPubMedGoogle Scholar
  49. Li H, Sethuraman N, Stadheim TA, Zha D, Prinz B, Ballew N, Bobrowicz P, Choi BK, Cook WJ, Cukan M, Houston-Cummings NR, Davidson R, Gong B, Hamilton SR, Hoopes JP, Jiang Y, Kim N, Mansfield R, Nett JH, Rios S, Strawbridge R, Wildt S, Gerngross TU (2006) Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat Biotechnol 24(2):210–215.  https://doi.org/10.1038/nbt1178 CrossRefPubMedGoogle Scholar
  50. Li TJ, Cheng JR, Hu BS, Liu Y, Qian GL, Liu FQ (2008) Construction, production, and characterization of recombinant scFv antibodies against methamidophos expressed in Pichia pastoris. World J Microb Biot 24(6):867–874.  https://doi.org/10.1007/s11274-007-9554-9 CrossRefGoogle Scholar
  51. Lisacek F, Mariethoz J, Alocci D, Rudd PM, Abrahams JL, Campbell MP, Packer NH, Ståhle J, Widmalm G, Mullen E, Adamczyk B, Rojas-Macias MA, Jin C, Karlsson NG (2017) Databases and associated tools for glycomics and glycoproteomics. In: Lauc G, Wuhrer M (eds) High-throughput glycomics and glycoproteomics: methods and protocols. Springer New York, New York, NY, pp 235–264CrossRefGoogle Scholar
  52. Liu CP, Tsai TI, Cheng T, Shivatare VS, Wu CY, Wu CY, Wong CH (2018a) Glycoengineering of antibody (Herceptin) through yeast expression and in vitro enzymatic glycosylation. Proc Natl Acad Sci U S A 115(4):720–725.  https://doi.org/10.1073/pnas.1718172115 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Liu CP, Tsai TI, Cheng T, Shivatare VS, Wu CY, Wu CY, Wong CH (2018b) Glycoengineering of antibody (Herceptin) through yeast expression and in vitro enzymatic glycosylation. Proc Natl Acad Sci U S A 115(4):720–725.  https://doi.org/10.1073/pnas.1718172115 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Liu L, Gomathinayagam S, Hamuro L, Prueksaritanont T, Wang W, Stadheim TA, Hamilton SR (2013) The impact of glycosylation on the pharmacokinetics of a TNFR2:Fc fusion protein expressed in Glycoengineered Pichia Pastoris. Pharm Res 30(3):803–812.  https://doi.org/10.1007/s11095-012-0921-3 CrossRefPubMedGoogle Scholar
  55. Lubbers J, Rodriguez E, van Kooyk Y (2018) Modulation of immune tolerance via siglec-sialic acid interactions. Front Immunol 9:2807.  https://doi.org/10.3389/fimmu.2018.02807 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Luo C, Chen S, Xu N, Wang C, Sai WB, Zhao W, Li YC, Hu XJ, Tian H, Gao XD, Yao WB (2017) Glycoengineering of pertuzumab and its impact on the pharmacokinetic/pharmacodynamic properties. Sci Rep 7:46347.  https://doi.org/10.1038/srep46347 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Macher BA, Galili U (2008) The Galalpha1,3Galbeta1,4GlcNAc-R (alpha-Gal) epitope: a carbohydrate of unique evolution and clinical relevance. Biochim Biophys Acta 1780(2):75–88.  https://doi.org/10.1016/j.bbagen.2007.11.003 CrossRefPubMedGoogle Scholar
  58. Maier M, Reusch D, Bruggink C, Bulau P, Wuhrer M, Molhoj M (2016) Applying mini-bore HPAEC-MS/MS for the characterization and quantification of Fc N-glycans from heterogeneously glycosylated IgGs. J Chromatogr B Analyt Technol Biomed Life Sci 1033-1034:342–352.  https://doi.org/10.1016/j.jchromb.2016.08.001 CrossRefPubMedGoogle Scholar
  59. Melmer M, Stangler T, Schiefermeier M, Brunner W, Toll H, Rupprechter A, Lindner W, Premstaller A (2010) HILIC analysis of fluorescence-labeled N-glycans from recombinant biopharmaceuticals. Anal Bioanal Chem 398(2):905–914.  https://doi.org/10.1007/s00216-010-3988-x CrossRefPubMedGoogle Scholar
  60. Mimura Y, Kelly RM, Unwin L, Albrecht S, Jefferis R, Goodall M, Mizukami Y, Mimura-Kimura Y, Matsumoto T, Ueoka H, Rudd PM (2016) Enhanced sialylation of a human chimeric IgG1 variant produced in human and rodent cell lines. J Immunol Methods 428:30–36.  https://doi.org/10.1016/j.jim.2015.11.009 CrossRefPubMedGoogle Scholar
  61. Muthing J, Kemminer SE, Conradt HS, Sagi D, Nimtz M, Karst U, Peter-Katalinic J (2003) Effects of buffering conditions and culture pH on production rates and glycosylation of clinical phase I anti-melanoma mouse IgG3 monoclonal antibody R24. Biotechnol Bioeng 83(3):321–334.  https://doi.org/10.1002/bit.10673 CrossRefPubMedGoogle Scholar
  62. Nilsson J (2016) Liquid chromatography-tandem mass spectrometry-based fragmentation analysis of glycopeptides. Glycoconj J 33(3):261–272.  https://doi.org/10.1007/s10719-016-9649-3 CrossRefPubMedGoogle Scholar
  63. Nimmerjahn F, Anthony RM, Ravetch JV (2007) Agalactosylated IgG antibodies depend on cellular Fc receptors for in vivo activity. Proc Natl Acad Sci U S A 104(20):8433–8437.  https://doi.org/10.1073/pnas.0702936104 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Nimmerjahn F, Ravetch JV (2008) Anti-inflammatory actions of intravenous immunoglobulin. Annu Rev Immunol 26:513–533.  https://doi.org/10.1146/annurev.immunol.26.021607.090232 CrossRefPubMedGoogle Scholar
  65. Okazaki A, Shoji-Hosaka E, Nakamura K, Wakitani M, Uchida K, Kakita S, Tsumoto K, Kumagai I, Shitara K (2004) Fucose depletion from human IgG1 oligosaccharide enhances binding enthalpy and association rate between IgG1 and FcgammaRIIIa. J Mol Biol 336(5):1239–1249.  https://doi.org/10.1016/j.jmb.2004.01.007 CrossRefPubMedGoogle Scholar
  66. Padler-Karavani V, Yu H, Cao H, Chokhawala H, Karp F, Varki N, Chen X, Varki A (2008) Diversity in specificity, abundance, and composition of anti-Neu5Gc antibodies in normal humans: potential implications for disease. Glycobiology 18(10):818–830.  https://doi.org/10.1093/glycob/cwn072 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Peschke B, Keller CW, Weber P, Quast I, Lunemann JD (2017) Fc-Galactosylation of human immunoglobulin gamma Isotypes improves C1q binding and enhances complement-dependent cytotoxicity. Front Immunol 8:646.  https://doi.org/10.3389/fimmu.2017.00646 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Plomp R, Dekkers G, Rombouts Y, Visser R, Koeleman CA, Kammeijer GS, Jansen BC, Rispens T, Hensbergen PJ, Vidarsson G (2015) Hinge-region O-Glycosylation of human immunoglobulin G3 (IgG3). Mol Cell Proteomics 14(5):1373–1384CrossRefGoogle Scholar
  69. Purcell O, Opdensteinen P, Chen W, Lowenhaupt K, Brown A, Hermann M, Cao J, Tenhaef N, Kallweit E, Kastilan R, Sinskey AJ, Perez-Pinera P, Buyel JF, Lu TK (2017) Production of functional anti-Ebola antibodies in Pichia pastoris. ACS Synth Biol 6(12):2183–2190.  https://doi.org/10.1021/acssynbio.7b00234 CrossRefPubMedGoogle Scholar
  70. Purohit S, Li T, Guan W, Song X, Song J, Tian Y, Li L, Sharma A, Dun B, Mysona D, Ghamande S, Rungruang B, Cummings RD, Wang PG, She JX (2018) Multiplex glycan bead array for high throughput and high content analyses of glycan binding proteins. Nat Commun 9(1):258.  https://doi.org/10.1038/s41467-017-02747-y CrossRefPubMedPubMedCentralGoogle Scholar
  71. Qu Y, Sun L, Zhang Z, Dovichi NJ (2018a) Site-specific glycan heterogeneity characterization by hydrophilic interaction liquid chromatography solid-phase extraction, reversed-phase liquid chromatography fractionation, and capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry. Anal Chem 90(2):1223–1233.  https://doi.org/10.1021/acs.analchem.7b03912 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Qu Y, Sun L, Zhu G, Zhang Z, Peuchen EH, Dovichi NJ (2018b) Sensitive and fast characterization of site-specific protein glycosylation with capillary electrophoresis coupled to mass spectrometry. Talanta 179:22–27.  https://doi.org/10.1016/j.talanta.2017.10.015 CrossRefPubMedGoogle Scholar
  73. Raju TS, Briggs JB, Borge SM, Jones AJ (2000) Species-specific variation in glycosylation of IgG: evidence for the species-specific sialylation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics. Glycobiology 10(5):477–486CrossRefGoogle Scholar
  74. Raju TS, Jordan RE (2012) Galactosylation variations in marketed therapeutic antibodies. MAbs 4(3):385–391.  https://doi.org/10.4161/mabs.19868 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Ravindranath MH, Jucaud V, Ferrone S (2018) Monitoring native HLA-I trimer specific antibodies in Luminex multiplex single antigen bead assay: evaluation of beadsets from different manufacturers (vol 450, pg 73, 2017). J Immunol Methods 460:125–125.  https://doi.org/10.1016/j.jim.2018.07.008 CrossRefPubMedGoogle Scholar
  76. Reusch D, Haberger M, Maier B, Maier M, Kloseck R, Zimmermann B, Hook M, Szabo Z, Tep S, Wegstein J, Alt N, Bulau P, Wuhrer M (2015) Comparison of methods for the analysis of therapeutic immunoglobulin G Fc-glycosylation profiles--part 1: separation-based methods. MAbs 7(1):167–179.  https://doi.org/10.4161/19420862.2014.986000 CrossRefPubMedGoogle Scholar
  77. Reusch D, Tejada ML (2015) Fc glycans of therapeutic antibodies as critical quality attributes. Glycobiology 25(12):1325–1334.  https://doi.org/10.1093/glycob/cwv065 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Ruhaak LR, Zauner G, Huhn C, Bruggink C, Deelder AM, Wuhrer M (2010) Glycan labeling strategies and their use in identification and quantification. Anal Bioanal Chem 397(8):3457–3481.  https://doi.org/10.1007/s00216-010-3532-z CrossRefPubMedPubMedCentralGoogle Scholar
  79. Samraj AN, Bertrand KA, Luben R, Khedri Z, Yu H, Nguyen D, Gregg CJ, Diaz SL, Sawyer S, Chen X, Eliassen H, Padler-Karavani V, Wu K, Khaw KT, Willett W, Varki A (2018) Polyclonal human antibodies against glycans bearing red meat-derived non-human sialic acid N-glycolylneuraminic acid are stable, reproducible, complex and vary between individuals: total antibody levels are associated with colorectal cancer risk. PLoS One 13(6):e0197464.  https://doi.org/10.1371/journal.pone.0197464 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Scallon BJ, Tam SH, McCarthy SG, Cai AN, Raju TS (2007) Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality. Mol Immunol 44(7):1524–1534.  https://doi.org/10.1016/j.molimm.2006.09.005 CrossRefPubMedGoogle Scholar
  81. Scholler N, Garvik B, Quarles T, Jiang S, Urban N (2006) Method for generation of in vivo biotinylated recombinant antibodies by yeast mating. J Immunol Methods 317(1–2):132–143.  https://doi.org/10.1016/j.jim.2006.10.003 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Sengupta PP, Rudramurthy GR, Ligi M, Jacob SS, Rahman H, Roy P (2018) Development and evaluation of recombinant antigen and monoclonal antibody based competition ELISA for the sero-surveillance of surra in animals. J Immunol Methods 460:87–92.  https://doi.org/10.1016/j.jim.2018.06.013 CrossRefPubMedGoogle Scholar
  83. Seo JS, Kim YJ, Cho JM, Baek E, Lee GM (2013) Effect of culture pH on recombinant antibody production by a new human cell line, F2N78, grown in suspension at 33.0 degrees C and 37.0 degrees C. Appl Microbiol Biotechnol 97(12):5283–5291.  https://doi.org/10.1007/s00253-013-4849-2 CrossRefPubMedGoogle Scholar
  84. Seo JS, Min BS, Kim YJ, Cho JM, Baek E, Cho MS, Lee GM (2014) Effect of glucose feeding on the glycosylation quality of antibody produced by a human cell line, F2N78, in fed-batch culture. Appl Microbiol Biotechnol 98(8):3509–3515.  https://doi.org/10.1007/s00253-013-5462-0 CrossRefPubMedGoogle Scholar
  85. Shaheen HH, Prinz B, Chen MT, Pavoor T, Lin S, Houston-Cummings NR, Moore R, Stadheim TA, Zha D (2013) A dual-mode surface display system for the maturation and production of monoclonal antibodies in glyco-engineered Pichia pastoris. PLoS One 8(7):e70190.  https://doi.org/10.1371/journal.pone.0070190 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y, Sakurada M, Uchida K, Anazawa H, Satoh M, Yamasaki M, Hanai N, Shitara K (2003) The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem 278(5):3466–3473.  https://doi.org/10.1074/jbc.M210665200 CrossRefPubMedGoogle Scholar
  87. Smith SL (1996) Ten years of Orthoclone OKT3 (muromonab-CD3): a review. J Transpl Coord 6(3):109CrossRefGoogle Scholar
  88. Stadlmann J, Pabst M, Kolarich D, Kunert R, Altmann F (2008) Analysis of immunoglobulin glycosylation by LC-ESI-MS of glycopeptides and oligosaccharides. Proteomics 8(14):2858–2871.  https://doi.org/10.1002/pmic.200700968 CrossRefPubMedGoogle Scholar
  89. Steinke JW, Platts-Mills TA, Commins SP (2015) The alpha-gal story: lessons learned from connecting the dots. J Allergy Clin Immunol 135(3):589–596; quiz 597.  https://doi.org/10.1016/j.jaci.2014.12.1947 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Strasser R, Stadlmann J, Schahs M, Stiegler G, Quendler H, Mach L, Glossl J, Weterings K, Pabst M, Steinkellner H (2008) Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure. Plant Biotechnol J 6(4):392–402.  https://doi.org/10.1111/j.1467-7652.2008.00330.x CrossRefPubMedGoogle Scholar
  91. Subramaniam JM, Whiteside G, McKeage K, Croxtall JC (2012) Mogamulizumab. Drugs 72(9):1293–1298.  https://doi.org/10.2165/11631090-000000000-00000 CrossRefPubMedGoogle Scholar
  92. Sun T, Li CD, Han L, Jiang H, Xie YQ, Zhang BH, Qian XP, Lu HL, Zhu JW (2015) Functional knockout of FUT8 in Chinese hamster ovary cells using CRISPR/Cas9 to produce a defucosylated antibody. Eng Life Sci 15(6):660–666.  https://doi.org/10.1002/elsc.201400218 CrossRefGoogle Scholar
  93. Szabo Z, Guttman A, Bones J, Karger BL (2011) Rapid high-resolution characterization of functionally important monoclonal antibody N-glycans by capillary electrophoresis. Anal Chem 83(13):5329–5336.  https://doi.org/10.1021/ac2007587 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Tarentino AL, Plummer TH Jr (1994) Enzymatic deglycosylation of asparagine-linked glycans: purification, properties, and specificity of oligosaccharide-cleaving enzymes from Flavobacterium meningosepticum. Methods Enzymol 230:44–57CrossRefGoogle Scholar
  95. Thomann M, Reckermann K, Reusch D, Prasser J, Tejada ML (2016) Fc-galactosylation modulates antibody-dependent cellular cytotoxicity of therapeutic antibodies. Mol Immunol 73:69–75.  https://doi.org/10.1016/j.molimm.2016.03.002 CrossRefPubMedGoogle Scholar
  96. Tommasone S, Allabush F, Tagger YK, Norman J, Kopf M, Tucker JHR, Mendes PM (2019) The challenges of glycan recognition with natural and artificial receptors. Chem Soc Rev 48(22):5488–5505.  https://doi.org/10.1039/c8cs00768c CrossRefPubMedGoogle Scholar
  97. Treffers LW, van Houdt M, Bruggeman CW, Heineke MH, Zhao XW, van der Heijden J, Nagelkerke SQ, Verkuijlen P, Geissler J, Lissenberg-Thunnissen S, Valerius T, Peipp M, Franke K, van Bruggen R, Kuijpers TW, van Egmond M, Vidarsson G, Matlung HL, van den Berg TK (2018) FcgammaRIIIb restricts antibody-dependent destruction of cancer cells by human neutrophils. Front Immunol 9:3124.  https://doi.org/10.3389/fimmu.2018.03124 CrossRefPubMedGoogle Scholar
  98. van de Bovenkamp FS, Hafkenscheid L, Rispens T, Rombouts Y (2016) The emerging importance of IgG fab glycosylation in immunity. J Immunol 196(4):1435–1441.  https://doi.org/10.4049/jimmunol.1502136 CrossRefPubMedGoogle Scholar
  99. Varki A (2001) N-glycolylneuraminic acid deficiency in humans. Biochimie 83(7):615–622CrossRefGoogle Scholar
  100. Wang EQ, Bukowski JF, Yunis C, Shear CL, Ridker PM, Schwartz PF, Baltrukonis D (2019) Assessing the potential risk of cross-reactivity between anti-bococizumab antibodies and other anti-PCSK9 monoclonal antibodies. Biodrugs 33(5):571–579.  https://doi.org/10.1007/s40259-019-00375-0 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Wang Q, Chung CY, Chough S, Betenbaugh MJ (2018) Antibody glycoengineering strategies in mammalian cells. Biotechnol Bioeng 115(6):1378–1393.  https://doi.org/10.1002/bit.26567 CrossRefPubMedGoogle Scholar
  102. Wolf RA, Marx ME, Szalaj L, Kuper JJ, Cavanaugh PF (2015) Allergic/infusion reactions reported with cetuximab and rituximab. World Allergy Organ 8(Suppl 1):A82–A82CrossRefGoogle Scholar
  103. Wolfert MA, Boons GJ (2013) Adaptive immune activation: glycosylation does matter. Nat Chem Biol 9(12):776–784.  https://doi.org/10.1038/nchembio.1403 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Wright A, Morrison SL (1998) Effect of C2-associated carbohydrate structure on Ig effector function: studies with chimeric mouse-human IgG1 antibodies in glycosylation mutants of Chinese hamster ovary cells. J Immunol 160(7):3393–3402PubMedGoogle Scholar
  105. Yamane-Ohnuki N, Kinoshita S, Inoue-Urakubo M, Kusunoki M, Iida S, Nakano R, Wakitani M, Niwa R, Sakurada M, Uchida K, Shitara K, Satoh M (2004) Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol Bioeng 87(5):614–622.  https://doi.org/10.1002/bit.20151 CrossRefPubMedGoogle Scholar
  106. Yang J, Primack R, Frohn M, Wang W, Luan P, Retter MW, Flynn GC (2015a) Impact of glycation on antibody clearance. AAPS J 17(1):237–244.  https://doi.org/10.1208/s12248-014-9694-4 CrossRefPubMedGoogle Scholar
  107. Yang X, Kim SM, Ruzanski R, Chen Y, Moses S, Ling WL, Li X, Wang SC, Li H, Ambrogelly A, Richardson D, Shameem M (2016) Ultrafast and high-throughput N-glycan analysis for monoclonal antibodies. MAbs 8(4):706–717.  https://doi.org/10.1080/19420862.2016.1156828 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Yang Z, Wang S, Halim A, Schulz MA, Frodin M, Rahman SH, Vester-Christensen MB, Behrens C, Kristensen C, Vakhrushev SY, Bennett EP, Wandall HH, Clausen H (2015b) Engineered CHO cells for production of diverse, homogeneous glycoproteins. Nat Biotechnol 33(8):842–844.  https://doi.org/10.1038/nbt.3280 CrossRefPubMedGoogle Scholar
  109. Yu M, Brown D, Reed C, Chung S, Lutman J, Stefanich E, Wong A, Stephan JP, Bayer R (2012) Production, characterization, and pharmacokinetic properties of antibodies with N-linked mannose-5 glycans. MAbs 4(4):475–487.  https://doi.org/10.4161/mabs.20737 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Yu YQ, Gilar M, Kaska J, Gebler JC (2005) A rapid sample preparation method for mass spectrometric characterization of N-linked glycans. Rapid Commun Mass Spectrom 19(16):2331–2336.  https://doi.org/10.1002/rcm.2067 CrossRefPubMedGoogle Scholar
  111. Zhang L, Luo S, Zhang B (2016a) Glycan analysis of therapeutic glycoproteins. MAbs 8(2):205–215.  https://doi.org/10.1080/19420862.2015.1117719 CrossRefPubMedGoogle Scholar
  112. Zhang L, Luo S, Zhang B (2016b) The use of lectin microarray for assessing glycosylation of therapeutic proteins. MAbs 8(3):524–535.  https://doi.org/10.1080/19420862.2016.1149662 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Zhang N, Liu L, Dumitru CD, Cummings NRH, Cukan M, Jiang Y, Yuan L, Fang L, Mitchell T, Mallem MR (2011) Glycoengineered Pichia produced anti-HER2 is comparable to trastuzumab in preclinical study. Mabs 3(3):289–298CrossRefGoogle Scholar
  114. Zhang Q, Gimeno A, Santana D, Wang Z, Valdes-Balbin Y, Rodriguez-Noda LM, Hansen T, Kong L, Shen M, Overkleeft HS, Verez-Bencomo V, van der Marel GA, Jimenez-Barbero J, Chiodo F, Codee JDC (2019a) Synthetic, zwitterionic Sp1 oligosaccharides adopt a helical structure crucial for antibody interaction. ACS Cent Sci 5(8):1407–1416.  https://doi.org/10.1021/acscentsci.9b00454 CrossRefPubMedPubMedCentralGoogle Scholar
  115. Zhang Z, Shah B, Richardson J (2019b) Impact of fc N-glycan sialylation on IgG structure. MAbs 11(8):1381–1390.  https://doi.org/10.1080/19420862.2019.1655377 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Zhao M, Wang J, Luo M, Luo H, Zhao M, Han L, Zhang M, Yang H, Xie Y, Jiang H, Feng L, Lu H, Zhu J (2018) Rapid development of stable transgene CHO cell lines by CRISPR/Cas9-mediated site-specific integration into C12orf35. Appl Microbiol Biotechnol 102(14):6105–6117.  https://doi.org/10.1007/s00253-018-9021-6 CrossRefPubMedGoogle Scholar
  117. Zhou Q, Qiu H (2019) The mechanistic impact of N-glycosylation on stability, pharmacokinetics, and immunogenicity of therapeutic proteins. J Pharm Sci 108(4):1366–1377.  https://doi.org/10.1016/j.xphs.2018.11.029 CrossRefPubMedGoogle Scholar
  118. Zong HF, Han L, Ding K, Wang JX, Sun T, Zhang XY, Cagliero C, Jiang H, Xie YQ, Xu JR, Zhang BH, Zhu JW (2017) Producing defucosylated antibodies with enhanced in vitro antibody-dependent cellular cytotoxicity via FUT8 knockout CHO-S cells. Eng Life Sci 17(7):801–808.  https://doi.org/10.1002/elsc.201600255 CrossRefGoogle Scholar
  119. Zou G, Ochiai H, Huang W, Yang Q, Li C, Wang LX (2011) Chemoenzymatic synthesis and Fcgamma receptor binding of homogeneous glycoforms of antibody Fc domain. Presence of a bisecting sugar moiety enhances the affinity of Fc to FcgammaIIIa receptor. J Am Chem Soc 133(46):18975–18991.  https://doi.org/10.1021/ja208390n CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of PharmacyShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations