Advertisement

Colletotrichum: species complexes, lifestyle, and peculiarities of some sources of genetic variability

  • Leandro Lopes da Silva
  • Hanna Lorena Alvarado Moreno
  • Hilberty Lucas Nunes Correia
  • Mateus Ferreira Santana
  • Marisa Vieira de QueirozEmail author
Mini-Review

Abstract

The genus Colletotrichum comprises species with different lifestyles but is mainly known for phytopathogenic species that infect crops of agronomic relevance causing considerable losses. The fungi of the genus Colletotrichum are distributed in species complexes and within each complex some species have particularities regarding their lifestyle. The most commonly found and described lifestyles in Colletotrichum are endophytic and hemibiotrophic phytopathogenic. Several of these phytopathogenic species show wide genetic variability, which makes long-term maintenance of resistance in plants difficult. Different mechanisms may play an important role in the emergence of genetic variants but are not yet fully understood in this genus. These mechanisms include heterokaryosis, a parasexual cycle, sexual cycle, transposable element activity, and repeat-induced point mutations. This review provides an overview of the genus Colletotrichum, the species complexes described so far and the most common lifestyles in the genus, with a special emphasis on the mechanisms that may be responsible, at least in part, for the emergence of new genotypes under field conditions.

Keywords

Phytopathogens Colletotrichum species complexes sexual cycle parasexual cycle Repeat Induced Point Mutation transposable elements 

Notes

Funding information

This research was financially supported by the following Brazilian agencies: the Minas Gerais Science Foundation (FAPEMIG–Fundação de Amparo à Pesquisa do Estado de Minas Gerais), the Brazilian Federal Agency of Support and Evaluation of Postgraduate Education–Finance code 001 (CAPES–Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), and the National Council of Scientific and Technological Development (CNPq–Conselho Nacional de Desenvolvimento Científico e Tecnológico).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Abang MM, Abraham WR, Asiedu R, Hoffmann P, Wolf G, Winter S (2009) Secondary metabolite profile and phytotoxic activity of genetically distinct forms of Colletotrichum gloeosporioides from yam (Dioscorea spp.). Mycol Res 113:130–140.  https://doi.org/10.1016/j.mycres.2008.09.004 CrossRefPubMedGoogle Scholar
  2. Ali MEK, Warren HL (1987) Physiological races of Colletotrichum graminicola on sorghum. Plant Dis 71(5):402–404.  https://doi.org/10.1094/PD-71-0402 CrossRefGoogle Scholar
  3. Alkan N, Meng X, Friedlander G, Reuveni E, Sukno S, Sherman A, Thon M, Fluhr R, Prusky D (2013) Global aspects of pacC regulation of pathogenicity genes in Colletotrichum gloeosporioides as revealed by transcriptome analysis. Mol Plant Microbe Interact 26(11):1345–1358.  https://doi.org/10.1094/MPMI-03-13-0080-R CrossRefPubMedGoogle Scholar
  4. Anand T, Bhaskaran R, Raguchander T, Karthikeyan G, Rajesh M, Senthilraja G (2008) Production of cell wall degrading enzymes and toxins by Colletotrichum capsici and Alternaria alternata causing fruit rot of chillies. J Plant Prot Res 48(4):437–451.  https://doi.org/10.2478/v10045-008-0053-2 CrossRefGoogle Scholar
  5. Araújo KS, Brito VN, Veloso TGR, Leite TS, Pereira OL, Mizubuti ESG, Queiroz MV (2018) Diversity of culturable endophytic fungi of Hevea guianensis: a latex producer native tree from the Brazilian Amazon. Afr J Microbiol Res 12(42):953–962.  https://doi.org/10.5897/AJMR2018.8980 CrossRefGoogle Scholar
  6. Ariyawansa HA, Hyde KD, Jayasiri SC, Buyck B, Chethana KWT, Dai DQ, Dai YC, Daranagama DA, Jayawardena RS, Lücking R, Ghobad-Nejhad M, Niskanen T, Thambugala KM, Voigt K, Zhao RL, Li GJ, Doilom M, Boonmee S, Yang ZL, Cai Q, Cui YY, Bahkali AH, Chen J, Cui BK, Chen JJ, Dayarathne MC, Dissanayake AJ, Ekanayaka AH, Hashimoto A, Hongsanan S, Jones EBG, Larsson E, Li WJ, Li QR, Liu JK, Luo ZL, Maharachchikumbura SSN, Mapook A, McKenzie EHC, Norphanphoun C, Konta S, Pang KL, Perera RH, Phookamsak R, Phukhamsakda C, Pinruan U, Randrianjohany E, Singtripop C, Tanaka K, Tian CM, Tibpromma S, Abdel-Wahab MA, Wanasinghe DN, Wijayawardene NN, Zhang JF, Zhang H, Abdel-Aziz FA, Wedin M, Westberg M, Ammirati JF, Bulgakov TS, Lima DX, Callaghan TM, Callac P, Chang CH, Coca LF, Dal-Forno M, Dollhofer V, Fliegerová K, Greiner K, Griffith GW, Ho HM, Hofstetter V, Jeewon R, Kang JC, Wen TC, Kirk PM, Kytövuori I, Lawrey JD, Xing J, Li H, Liu ZY, Liu XZ, Liimatainen K, Lumbsch HT, Matsumura M, Moncada B, Nuankaew S, Parnmen S, de Azevedo SALCM, Sommai S, Song Y, de Souza CAF, de Souza-Motta CM, Su HY, Suetrong S, Wang Y, Wei SF, Wen TC, Yuan HS, Zhou LW, Réblová M, Fournier J, Camporesi E, Luangsa-ard JJ, Tasanathai K, Khonsanit A, Thanakitpipattana D, Somrithipol S, Diederich P, Millanes AM, Common RS, Stadler M, Yan JY, Li X, Lee HW, Nguyen TTT, Lee HB, Battistin E, Marsico O, Vizzini A, Vila J, Ercole E, Eberhardt U, Simonini G, Wen H-A, Chen X-H, Miettinen O, Spirin V, Hernawati (2015) Fungal diversity notes 111–252—taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers 75:27–274.  https://doi.org/10.1007/s13225-015-0346-5 CrossRefGoogle Scholar
  7. Armstrong-Cho CL, Banniza S (2006) Glomerella truncata sp. nov., the teleomorph of Colletotrichum truncatum. Mycol Res 110(8):951–956.  https://doi.org/10.1016/j.mycres.2006.06.002 CrossRefPubMedGoogle Scholar
  8. Bagagli E, Valadares MCC, Azevedo JL (1991) Parameiosis in the entomopathogenic fungus Metarhizium anisopliae (Metsh.) Sorokin. Braz J Genet 14(2):261–271Google Scholar
  9. Barimani M, Pethybridge SJ, Vaghefi N, Hay FS, Taylor PWJ (2013) A new anthracnose disease of Pyrethrum caused by Colletotrichum tanaceti sp. nov. Plant Pathol 62(6):1248–1257.  https://doi.org/10.1111/ppa.12054 CrossRefGoogle Scholar
  10. Baroncelli R, Sanz-Martín JM, Rech GE, Sukno SA, Thon MR (2014a) Draft genome sequence of Colletotrichum sublineola, a destructive pathogen of cultivated sorghum. Genome Announc 2(3):10–11.  https://doi.org/10.1128/genomeA.00540-14 CrossRefGoogle Scholar
  11. Baroncelli R, Sreenivasaprasad S, Sukno SA, Thon MR, Holub E (2014b) Draft genome sequence of Colletotrichum acutatum sensu lato (Colletotrichum fioriniae). Genome Announc 2(2):1–2.  https://doi.org/10.1128/genomeA.00112-14 CrossRefGoogle Scholar
  12. Baroncelli R, Zapparata A, Sarrocco S, Sukno SA, Lane CR, Thon MR, Vannacci G, Holub E, Sreenivasaprasad S (2015) Molecular diversity of anthracnose pathogen populations associated with UK strawberry production suggests multiple introductions of three different Colletotrichum species. PLoS One 10(6):e0129140.  https://doi.org/10.1371/journal.pone.0129140 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Baroncelli R, Amby DB, Zapparata A, Sarrocco S, Vannacci G, Le Floch G, Harrison RJ, Holub E, Sukno SA, Sreenivasaprasad S, Thon MR (2016) Gene family expansions and contractions are associated with host range in plant pathogens of the genus Colletotrichum. BMC Genomics 17:1–17.  https://doi.org/10.1186/s12864-016-2917-6 CrossRefGoogle Scholar
  14. Baroncelli R, Sukno SA, Sarrocco S, Cafà G, Le Floch G, Thon MR (2018) Whole-genome sequence of the orchid anthracnose pathogen Colletotrichum orchidophilum. Mol Plant Microbe Interact 31(10):979–981.  https://doi.org/10.1094/MPMI-03-18-0055-A CrossRefPubMedGoogle Scholar
  15. Bhadauria V, MacLachlan R, Pozniak C, Cohen-Skalie A, Li L, Halliday J, Banniza S (2019) Genetic map-guided genome assembly reveals a virulence-governing minichromosome in the lentil anthracnose pathogen Colletotrichum lentis. New Phytol 221:431–445.  https://doi.org/10.1111/nph.15369 CrossRefPubMedGoogle Scholar
  16. Bonatelli R Jr, Azevedo JL, Valent GU (1983) Parasexuality in a citric acid producing strain of Aspergillus niger. Braz J Genet 6(3):399–405Google Scholar
  17. Braga MB, Santana MF, Costa RV, Brommonschenkel SH, Araújo EF, Queiroz MV (2014) Transposable elements belonging to the Tc1-Mariner superfamily are heavily mutated in Colletotrichum graminicola. Mycologia 106(4):629–641.  https://doi.org/10.3852/13-262 CrossRefPubMedGoogle Scholar
  18. Cai L, Hyde KD, Taylor PWJ, Weir BS, Waller J, Abang MM, Zhang JZ, Yang YL, Phoulivong S, Liu ZY, Prihastuti H, Shivas RG, McKenzie EHC, Johnston PR (2009) A polyphasic approach for studying Colletotrichum. Fungal Divers 39:183–204Google Scholar
  19. Cai L, Giraud T, Zhang N, Begerow D, Cai G, Shivas RG (2011) The evolution of species concepts and species recognition criteria in plant pathogenic fungi. Fungal Divers 50:121–133.  https://doi.org/10.1007/s13225-011-0127-8 CrossRefGoogle Scholar
  20. Cambareri EB, Jensen BC, Schabtach E, Selker EU (1998) Repeat induced G-C to AT mutations in Neurospora. Science 244(4912):1571–1575.  https://doi.org/10.1126/science.2544994 CrossRefGoogle Scholar
  21. Cannon PF, Damm U, Johnston PR, Weir BS (2012) Colletotrichum–current status and future directions. Stud Mycol 73(1):181–213.  https://doi.org/10.3114/sim0014 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Cano J, Guarro J, Gené J (2004) Molecular and morphological identification of Colletotrichum species of clinical interest. J Clin Microbiol 42(6):2450–2454.  https://doi.org/10.1128/JCM.42.6.2450-2454.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Carvalho CR, Mendes-Costa MC (2011) Vegetative compatibility and heterokaryon formation between different isolates of Colletotrichum lindemuthianum by using the nit mutant system. Braz J Microbiol 42:346–353.  https://doi.org/10.1590/S1517-83822011000100044 CrossRefGoogle Scholar
  24. Castro-Prado MAA, Querol CB, Sant’Anna JR, Miyamoto CT, Fanco CCS, Mangolin CA, Machado MFPS (2007) Vegetative compability and parasexual segregation in Colletotrichum lindemuthianum, a fungal pathogen of the common bean. Genet Mol Res 6(3):634–642PubMedGoogle Scholar
  25. Chacko RJ, Weidemann GJ, Tebeest DO, Correll JC (1994) The use of vegetative compatibility and heterokaryosis to determine potential asexual gene exchange in Colletotrichum gloeosporioides. Biol control 4(4):382–389.  https://doi.org/10.1006/bcon.1994.1048 CrossRefGoogle Scholar
  26. Chakraborty S, Perrott R, Ellis N, Thomas MR (1999) New aggressive Colletotrichum gloeosporioides strains on Stylosanthes scabra detected by virulence and DNA analysis. Plant Dis 83(4):333–340.  https://doi.org/10.1094/PDIS.1999.83.4.333 CrossRefPubMedGoogle Scholar
  27. Chen F, Goodwin PH, Khan A, Hsiang T (2002) Population structure and mating-type genes of Colletotrichum graminicola from Agrostis palustris. Can J Microbiol 48(5):427–436.  https://doi.org/10.1139/w02-034 CrossRefPubMedGoogle Scholar
  28. Clutterbuck AJ (2011) Genomic evidence of repeat-induced point mutation (RIP) in filamentous ascomycetes. Fungal Genet Biol 48(3):306–326.  https://doi.org/10.1016/j.fgb.2010.09.002 CrossRefPubMedGoogle Scholar
  29. Cove DJ (1976) Chlorate toxicity in Aspergillus nidulans: the selection and characterisation of chlorate resistant mutants. Heredity 36(2):191–203.  https://doi.org/10.1038/hdy.1976.24 CrossRefPubMedGoogle Scholar
  30. Crouch JA, Glasheen BM, Giunta MA, Clarke BB, Hillman BI (2008a) The evolution of transposon repeat-induced point mutation in the genome of Colletotrichum cereale: reconciling sex, recombination and homoplasy in an “asexual” pathogen. Fungal Genet Biol 45(3):190–206.  https://doi.org/10.1016/j.fgb.2007.08.004 CrossRefPubMedGoogle Scholar
  31. Crouch JA, Glasheen BM, Uddin W, Clarke BB, Hillman BI (2008b) Patterns of diversity in populations of the turfgrass pathogen Colletotrichum cereale as revealed by transposon fingerprint profiles. Crop Sci 48(3):1203–1210.  https://doi.org/10.2135/cropsci2007.08.0427 CrossRefGoogle Scholar
  32. Crouch JA, Clarke BB, Hillman BI (2009) What is the value of ITS sequence data in Colletotrichum systematics and species diagnosis? A case study using the falcate-spored graminicolous Colletotrichum group. Mycologia 101(5):648–656.  https://doi.org/10.3852/08-231 CrossRefPubMedGoogle Scholar
  33. Crouch JA (2014) Colletotrichum caudatum s.l. is a species complex. IMA Fungus 5:17–30.  https://doi.org/10.5598/imafungus.2014.05.01.03 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Curry KJ, Abril M, Avant JB, Smith BJ (2002) Strawberry anthracnose: Histopathology of Colletotrichum acutatum and C. fragariae. Phytopathology 92(10):1055–1063.  https://doi.org/10.1094/PHYTO.2002.92.10.1055 CrossRefPubMedGoogle Scholar
  35. Da Silva DCFB, Michereff SJ (2013) Biology of Colletotrichum spp. and epidemiology of the anthracnose in tropical fruit trees. Rev. Caatinga 26(4):130–138Google Scholar
  36. Dallery J-F, Lapalu N, Zampounis A, Pigné S, Luyten I, Amselem J, Wittenberg AHJ, Zhou S, Queiroz MV, Robin G, Auger A, Hainaut HB, Kim K-T, Lee Y-H, Lespinet O, Schwartz TMR, O’Connel RJO (2017) Gapless genome assembly of Colletotrichum higginsianum reveals chromosome structure and association of transposable elements with secondary metabolite gene clusters. BMC Genomics 18(1):667.  https://doi.org/10.1186/s12864-017-4083-x CrossRefPubMedPubMedCentralGoogle Scholar
  37. Damm U, Woudenberg JHC, Cannon PF, Crous PW (2009) Colletotrichum species with curved conidia from herbaceous hosts. Fungal Divers 39:45–87Google Scholar
  38. Damm U, Cannon PF, Woudenberg JHC, Crous PW (2012a) The Colletotrichum acutatum species complex. Stud Mycol 73:37–113.  https://doi.org/10.3114/sim0010 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Damm U, Cannon PF, Woudenberg JHC, Johnston PR, Weir BS, Tan YP, Shivas RG, Crous PW (2012b) The Colletotrichum boninense species complex. Stud Mycol 73:1–36.  https://doi.org/10.3114/sim0002 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Damm U, Sato T, Alizadeh A, Groenewald JZ, Crous PW (2019) The Colletotrichum dracaenophilum, C. magnum and C. orchidearum species complexes. Stud Mycol 92:1–46.  https://doi.org/10.1016/j.simyco.2018.04.001 CrossRefPubMedGoogle Scholar
  41. Davide LMC, Souza EA (2009) Pathogenic variability within race 65 of Colletotrichum lindemuthianum and its implications for common bean breeding. Crop Breeding Appl Biotechnol 9:23–30CrossRefGoogle Scholar
  42. De Lorenzo G, Ferrari S (2002) Polygalacturonase-inhibiting proteins in defense against phytopathogenic fungi. Curr Opin Plant Biol 5(4):295–299.  https://doi.org/10.1016/S1369-5266(02)00271-6 CrossRefPubMedGoogle Scholar
  43. de Queiroz CB, Correia HLN, Menicucci RP, Vidigal PMP, de Queiroz MV (2017) Draft genome sequences of two isolates of Colletotrichum lindemuthianum, the causal agent of anthracnose in common beans. Genome Announc 5:17–18.  https://doi.org/10.1128/genomeA.00214-17 CrossRefGoogle Scholar
  44. Dean R, Van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD (2012) The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13(4):414–430.  https://doi.org/10.1111/j.1364-3703.2011.00783.x CrossRefPubMedPubMedCentralGoogle Scholar
  45. Ditmore M, Moore JW, TeBeest DO (2008) Interactions of two selected field isolates of Colletotrichum gloeosporioides f. sp. aeschynomene on Aeschynomene virginica. Biol Control 47(3):298–308.  https://doi.org/10.1016/j.biocontrol.2008.04.019 CrossRefGoogle Scholar
  46. Doyle VP, Oudemans PV, Rehner SA, Litt A (2013) Habitat and host indicate lineage identity in Colletotrichum gloeosporioides sl from wild and agricultural landscapes in North America. PLOS ONE 8(5):e62394.  https://doi.org/10.1371/journal.pone.0062394 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Du M, Schardl CL, Nuckles EM, Vaillancourt LJ (2005) Using mating-type gene sequences for improved phylogenetic resolution of Collectotrichum species complexes. Mycologia 97(3):641–658.  https://doi.org/10.1080/15572536.2006.11832795 CrossRefPubMedGoogle Scholar
  48. Edgerton CW (1914) Plus and minus strains in the genus Glomerella. Am J Bot 1(5):244–254.  https://doi.org/10.1002/j.1537-2197.1914.tb05391.x CrossRefGoogle Scholar
  49. Fernandes EG, Pereira OL, Silva CC, Bento CBP, Queiroz MV (2015) Diversity of endophytic fungi in Glycine max. Microbiol Res 181:84–92.  https://doi.org/10.1016/j.micres.2015.05.010 CrossRefPubMedGoogle Scholar
  50. Foulongne-Oriol M, Murat C, Castanera R, Ramírez L, Sonnenberg ASM (2013) Genome-wide survey of repetitive DNA elements in the button mushroom Agaricus bisporus. Fungal Genet Biol 55:6–21.  https://doi.org/10.1016/j.fgb.2013.04.003 CrossRefPubMedGoogle Scholar
  51. Franco CCS, Santa Anna JR, Rosada LJ, Kaneshima EN, Stangarlin JR, Castro-Prado MAA (2011) Vegetative compatibility groups and parasexual segregation in Colletotrichum acutatum isolates infecting different hosts. Phytopathology 101(8):923–928.  https://doi.org/10.1094/PHYTO-12-10-0327 CrossRefGoogle Scholar
  52. Freeman S, Rodriguez RJ (1993) Genetic conversion of a fungal plant pathogen to a nonpathogenic, endophytic mutualist. Science 260(5104):75–78.  https://doi.org/10.1126/science.260.5104.75 CrossRefPubMedGoogle Scholar
  53. Freeman S, Katan T, Shabi E (1998) Characterization of Colletotrichum species responsible for anthracnose diseases of various fruits. Plant Dis 82(6):596–605.  https://doi.org/10.1094/PDIS.1998.82.6.596 CrossRefPubMedGoogle Scholar
  54. Freitag M, Williams RL, Kothe GO, Selker EU (2002) A cytosine methyltransferase homologue is essential for repeat-induced point mutation in Neurospora crassa. Proc Natl Acad Sci 99(13):8802–8807.  https://doi.org/10.1073/pnas.132212899 CrossRefPubMedGoogle Scholar
  55. Fudal I, Ross S, Brun H, Besnard AL, Ermel M, Kuhn ML, Balesdent MH, Rouxel T (2009) Repeat-induced point mutation (RIP) as an alternative mechanism of evolution toward virulence in Leptosphaeria maculans. Mol Plant Microbe Interact 22(8):932–941.  https://doi.org/10.1094/MPMI-22-8-0932 CrossRefPubMedGoogle Scholar
  56. Gan P, Ikeda K, Irieda H, Narusaka M, O’Connell RJ, Narusaka Y, Takano Y, Kubo Y, Shirasu K (2013) Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. New Phytologist 197(4):1236–1249.  https://doi.org/10.1111/nph.12085 CrossRefPubMedGoogle Scholar
  57. Gan P, Narusaka M, Kumakura N, Tsushima A, Takano Y, Narusaka Y, Shirasu K (2016) Genus-wide comparative genome analyses of Colletotrichum species reveal specific gene family losses and gains during adaptation to specific infection lifestyles. Genome Biol Evol 8(5):1467–1481.  https://doi.org/10.1093/gbe/evw089 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Gan P, Narusaka M, Tsushima A, Narusaka Y, Takano Y, Shirasu K (2017) Draft Genome assembly of Colletotrichum chlorophyti, a pathogen of herbaceous plants. Genome Announc 5(10):4–5.  https://doi.org/10.1128/genomeA.01733-16
  59. Gan P, Tsushima A, Narusaka M, Narusaka Y, Takano Y, Kubo Y, Shirasu K (2019a) Genome sequence resources for four phytopathogenic fungi from the Colletotrichum orbiculare species complex. Mol Plant Microbe Interact 32(9):1088–1090.  https://doi.org/10.1094/mpmi-12-18-0352-a CrossRefPubMedGoogle Scholar
  60. Gan P, Tsushima A, Hiroyama R, Narusaka M, Takano Y, Narusaka Y, Kawaradani M, Damm U, Shirasu K (2019b) Colletotrichum shisoi sp. nov., an anthracnose pathogen of Perilla frutescens in Japan: molecular phylogenetic, morphological and genomic evidence. Sci Rep 9(1):13349. https://doi:10.1038/s41598-019-50076-5Google Scholar
  61. García-Serrano M, Laguna EA, Simpson J, Rodríguez-Guerra R (2008) Analysis of the MAT1-2-1 gene of Colletotrichum lindemuthianum. Mycoscience 49(5):312–317.  https://doi.org/10.1007/S10267-008-0424-6 CrossRefGoogle Scholar
  62. Gautam AK (2014) Colletotrichum gloeosporioides: biology, pathogenicity and management in India. J Plant Physiol Pathol 2(2).  https://doi.org/10.4172/2329-955x.1000125
  63. Gladyshev E, Kleckner N (2016) Recombination-independent recognition of DNA homology for repeat-induced point mutation (RIP) is modulated by the underlying nucleotide sequence. PLoS Genet 12(5):e1006015.  https://doi.org/10.1371/journal.pgen.1006015 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Gladyshev E, Kleckner N (2017a) Recombination-independent recognition of DNA homology for repeat-induced point mutation. Curr Genet 63(3):389–400.  https://doi.org/10.1007/s00294-016-0649-4 CrossRefPubMedGoogle Scholar
  65. Gladyshev E, Kleckner N (2017b) DNA sequence homology induces cytosine-to-thymine mutation by a heterochromatin-related pathway in Neurospora. Nat Genet 49(6):887–894.  https://doi.org/10.1038/ng.3857 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Gonçalves AE, Velho AC, Stadnik MJ (2016) Formation of conidial anastomosis tubes and melanization of appressoria are antagonistic processes in Colletotrichum spp. from apple. Eur J Plant Pathol 146(3):497–506.  https://doi.org/10.1007/s10658-016-0934-6 CrossRefGoogle Scholar
  67. Gonzaga LL, Costa LEO, Santos TT, Araujo EF, Queiroz MV (2015) Endophytic fungi from the genus Colletotrichum are abundant in the Phaseolus vulgaris and have high genetic diversity. J Appl Microbiol 118(2):485–496.  https://doi.org/10.1111/jam.12696 CrossRefPubMedGoogle Scholar
  68. Goyon C, Faugeron G (1989) Targeted transformation of Ascobolus immersus and de novo methylation of the resulting duplicated DNA sequences. Mol Cell Biol 9(7):2818–2827.  https://doi.org/10.1128/mcb.9.7.2818 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Grandaubert J, Bhattacharyya A, Stukenbrock EH (2015) RNA-seq-based gene annotation and comparative genomics of four fungal grass pathogens in the genus Zymoseptoria identify novel orphan genes and species-specific invasions of transposable elements. G3 (Bethesda) 5(7):1323–1333.  https://doi.org/10.1534/g3.115.017731/-/DC1 CrossRefGoogle Scholar
  70. Hacquard S, Kracher B, Hiruma K, Münch PC, Garrido-Oter R, Thon MR, Weimann A, Damm U, Dallery JF, Hainaut M, Henrissat B, Lespinet O, Sacristán S, Ver Loren van Themaat E, Kemen E, McHardy AC, Schulze-Lefert P, O'Connell RJ (2016) Survival trade-offs in plant roots during colonization by closely related beneficial and pathogenic fungi. Nat Commun 7:11362. https://doi:10.1038/ncomms11362Google Scholar
  71. Han JH, Chon JK, Ahn JH, Choi IY, Lee YH, Kim KS (2016) Whole genome sequence and genome annotation of Colletotrichum acutatum, causal agent of anthracnose in pepper plants in South Korea. Genomics Data 8:45–46.  https://doi.org/10.1016/j.gdata.2016.03.007 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Hane JK, Oliver RP (2008) RIPCAL: a tool for alignment-based analysis of repeat-induced point mutations in fungal genomic sequences. BMC Bioinformatics 9(1):478.  https://doi.org/10.1186/1471-2105-9-478 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Hane JK, Anderson JP, Williams AH, Sperschneider J, Singh KB (2014) Genome sequencing and comparative genomics of the broad host-range pathogen Rhizoctonia solani AG8. PLoS Genet 10(5):e1004281.  https://doi.org/10.1371/journal.pgen.1004281 CrossRefPubMedPubMedCentralGoogle Scholar
  74. He C, Nourse JP, Kelemu S, Irwin JA, Manners JM (1996) Cgt1: a non-LTR retrotransposon with restricted distribution in the fungal phytopathogen Colletotrichum gloeosporioides. Mol Gen Genet 252(3):320–331.  https://doi.org/10.1007/BF02173778 CrossRefPubMedGoogle Scholar
  75. He CZ, Rusu AG, Poplawski AM, Irwin JA, Manners JM (1998) Transfer of a supernumerary chromosome between vegetatively incompatible biotypes of the fungus Colletotrichum gloeosporioides. Genetics 150(4):1459–1466PubMedPubMedCentralGoogle Scholar
  76. Herzog S, Schumann MR, Fleißner A (2015) Cell fusion in Neurospora crassa. Curr Opin Microbiol 28:53–59.  https://doi.org/10.1016/j.mib.2015.08.002 CrossRefPubMedGoogle Scholar
  77. Higgins KL, Arnold AE, Miadlikowska J, Sarvate SD, Lutzoni F (2007) Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages. Mol Phylogenet Evol 42(2):543–555.  https://doi.org/10.1016/j.ympev.2006.07.012 CrossRefPubMedGoogle Scholar
  78. Hiruma K, Gerlach N, Sacristán S, Nakano RT, Hacquard S, Kracher B, Neumann U, Ramírez D, Bucher M, O’Connell RJ, Schulze-Lefert P (2016) Root Endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell 165(2):464–474.  https://doi.org/10.1016/j.cell.2016.02.028 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Horns F, Petit E, Hood ME (2017) Massive expansion of Gypsy-like retrotransposons in Microbotryum fungi. Genome Biol Evol 9(2):363–371.  https://doi.org/10.1093/gbe/evx011 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Horns F, Petit E, Yockteng R, Hood ME (2012) Patterns of repeat-induced point mutation in transposable elements of basidiomycete fungi. Genome Biol Evol 4(3):240–247.  https://doi.org/10.1093/gbe/evs005 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Howlett BJ, Lowe RGT, Macroft SJ, Wouw AP (2015) Evolution of virulence in fungal plant pathogens: exploiting fungal genomics to control plant disease. Mycologia 107(3):441–451.  https://doi.org/10.3852/14-317 CrossRefPubMedGoogle Scholar
  82. Huang F, Chen GQ, Hou X, Fu YS, Cai L, Hyde KD, Li HY (2013) Colletotrichum species associated with cultivated citrus in China. Fungal Divers 61:61–74.  https://doi.org/10.1007/s13225-013-0232-y CrossRefGoogle Scholar
  83. Hyde KD, Cai L, Cannon PF, Crouch JA, Crous PW, Damm U, Goodwin PH, Chen H, Johnston PR, Jones E, Liu ZY, Mckenzie E, Moriwaki J, Noireung P, Pennycook SR, Pfenning LH, Prihastuti H, Sato T, Shivas RG, Tan YP, Taylor P, Weir BS, Yang YL, Zhang JZ (2009) Colletotrichum – names in current use. Fungal Divers 39:147–182Google Scholar
  84. Inami K, Yoshioka-Akiyama C, Morita Y, Yamasaki M, Teraoka T, Arie T (2012) A genetic mechanism for emergence of races in Fusarium oxysporum f. sp. lycopersici: inactivation of avirulence gene AVR1 by transposon insertion. PLoS ONE 7(8):e44101.  https://doi.org/10.1371/journal.pone.0044101 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Irwin JAG, Cameron DF (1978) Two diseases in Stylosanthes spp. caused by Colletotrichum gloeosporioides in Australia, and pathogenic specialisation within one of the causal organisms. Aust J Agric Res 29:305–317CrossRefGoogle Scholar
  86. Ishikawa FH, Souza EA, Read ND, Roca GR (2010) Live-cell imaging of conidial fusion in the bean pathogen, Colletotrichum lindemuthianum. Fungal Biol 114:2–9.  https://doi.org/10.1016/j.funbio.2009.11.006 CrossRefPubMedGoogle Scholar
  87. Ishikawa FH, Souza EA, J-y S, Connolly L, Freitag M, Read N, Roca MG (2012) Heterokaryon incompatibility is suppressed following conidial anastomosis tube fusion in a fungal plant pathogen. PLoS ONE 7(2):e31175.  https://doi.org/10.1371/journal.pone.0031175 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Jayawardena RS, Hyde K, Damm U, Cai L, Liu M, Li X, Zhang W, Zhao W, Yan J (2016a) Notes on currently accepted species of Colletotrichum. Mycosphere 7(8):1192–1260.  https://doi.org/10.5943/mycosphere/si/2c/9 CrossRefGoogle Scholar
  89. Jayawardena RS, Li XH, Liu M, Zhang W, Yan JY (2016b) Colletotrichum: biological control, bio-catalyst, secondary metabolites and toxins. Mycosphere 7(8):1164–1176.  https://doi.org/10.5943/mycosphere/si/2c/7 CrossRefGoogle Scholar
  90. Kashiwa T, Suzuki T, Sato A, Akai K, Teraoka T, Komatsu K, Arie T (2016) A new biotype of Fusarium oxysporum f. sp. lycopersici race 2 emerged by a transposon-driven mutation of avirulence gene AVR1. FEMS Microbiol Lett 363(14):fnw132.  https://doi.org/10.1093/femsle/fnw132 CrossRefPubMedGoogle Scholar
  91. Kelly JD, Afanador L, Cameron LS (1994) New races of Colletotrichum lindemuthianum in Michigan and implications in dry bean resistance breeding. Plant dis 78(9):892–894.  https://doi.org/10.1094/PD-78-0892 CrossRefGoogle Scholar
  92. Khan A, Hsiang T (2003) The infection process of Colletotrichum graminicola and relative aggressiveness on four turfgrass species. Can J Microbiol 49(7):433–442.  https://doi.org/10.1139/w03-059 CrossRefPubMedGoogle Scholar
  93. Kogel K-H, Franken P, Hückelhoven R (2006) Endophyte or parasite–what decides? Curr Opin Plant Biol 9(4):358–363.  https://doi.org/10.1016/j.pbi.2006.05.001 CrossRefGoogle Scholar
  94. Kouzminova E, Selker EU (2001) dim-2 encodes a DNA methyltransferase responsible for all known cytosine methylation in Neurospora. EMBO J 20(15):4309–4323.  https://doi.org/10.1093/emboj/20.15.4309 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Krishnan P, Meile L, Plissonneau C, Ma X, Hartmann FE, Croll D, McDonald BA, Sánchez-Valle A (2018) Transposable element insertions shape gene regulation and melanin production in a fungal pathogen of wheat. BMC Biology 16:78.  https://doi.org/10.1186/s12915-018-0543-2 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Kuldau GA, Yates IE (2000) Evidence for Fusarium endophytes in cultivated and wild plants. Microb Endophytes:85–117Google Scholar
  97. Latunde-Dada AO, Bailey JA, Lucas JA (1997) Infection process of Colletotrichum destructivum O’Gara from lucerne (Medicago sativa L.). Eur J Plant Pathol 103:35–41.  https://doi.org/10.1023/A:1008698113368 CrossRefGoogle Scholar
  98. Leite B, Nicholson RL (1992) Mycosporine-alanine: A self-inhibitor of germination from the conidial mucilage of Colletotrichum graminicola. Exp Mycol 16:76–86.  https://doi.org/10.1016/0147-5975(92)90043-Q CrossRefGoogle Scholar
  99. Leite TS, Cnossen-Fassoni A, Pereira OL, Mizubuti ESGM, Araújo EF, Queiroz MV (2013) Novel and highly diverse fungal endophytes in soybean revealed by the consortium of two different techniques. J Microbiol 51:56–69.  https://doi.org/10.1007/s12275-013-2356-x CrossRefGoogle Scholar
  100. Lelwala RV, Korhonen PK, Young ND, Scott JB, Ades PK, Gasser RB, Taylor PWJ (2019) Comparative genome analysis indicates high evolutionary potential of pathogenicity genes in Colletotrichum tanaceti. PLoS ONE 14(5):e0212248.  https://doi.org/10.1371/journal.pone.0212248 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Li W-C, Chen C-L, Wang T-F (2018) Repeat-induced point (RIP) mutation in the industrial worhorse fungus Trichoderma reesei. Appl Microbiol Biotechnol 102(4):1567–1574.  https://doi.org/10.1007/s00253-017-8731-5 CrossRefPubMedGoogle Scholar
  102. Lijuan P, Youlian Y, Kevin DH, Bahkali AH, Zuoyi L (2012) Colletotrichum species on Citrus leaves in Guizhou and Yunnan provinces, China. Cryptogam Mycol 33(3):267–283.  https://doi.org/10.7872/crym.v33.iss3.2012.267 CrossRefGoogle Scholar
  103. Lima NB, Marcus MV, De Morais MA, Barbosa MAG, Michereff SJ, Hyde KD, Câmara MPS (2013) Five Colletotrichum species are responsible for mango anthracnose in northeastern Brazil. Fungal Divers 61:75–88.  https://doi.org/10.1007/s13225-013-0237-6 CrossRefGoogle Scholar
  104. Liu F, Cai L, Crous PW, Damm U (2014) The Colletotrichum gigasporum species complex. Persoonia - Mol Phylogeny Evol Fungi 33:83–97.  https://doi.org/10.3767/003158514X684447 CrossRefGoogle Scholar
  105. Liu F, Wang M, Damm U, Crous PW, Cai L (2016) Species boundaries in plant pathogenic fungi: a Colletotrichum case study. BMC Evol Biol 16:81.  https://doi.org/10.1186/s12862-016-0649-5 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Manners JM, He C (2011) Slow-growing heterokaryons as potential intermediates in supernumerary chromosome transfer between biotypes of Colletotrichum gloeosporioides. Mycol Progress 10(3):383–388.  https://doi.org/10.1007/s11557-011-0749-y CrossRefGoogle Scholar
  107. Marcelino J, Giordano R, Gouli S, Gouli V, Parker BL, Skinner M, TeBeest D, Cesnik R (2008) Colletotrichum acutatum var. fioriniae (teleomorph: Glomerella acutata var. fioriniae var. nov.) infection of a scale insect. Mycologia 100:353–374CrossRefGoogle Scholar
  108. Marin-Felix Y, Groenewald JZ, Cai L, Chen Q, Marincowitz S, Barnes I, Bensch K, Braun U, Camporesi E, Damm U, de Beer ZW, Dissanayake A, Edwards J, Giraldo A, Hernández-Restrepo M, Hyde KD, Jayawardena RS, Lombard L, Luangsa-ard J, McTaggart AR, Rossman AY, Sandoval-Denis M, Shen M, Shivas RG, Tan YP, van der Linde EJ, Wingfield MJ, Wood AR, Zhang JQ, Zhang Y, Crous PW (2017) Genera of phytopathogenic fungi: GOPHY 1. Stud Mycol 86:99–216.  https://doi.org/10.1016/jsimyco201704002 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Masel AM, He C, Poplawski AM, Irwin JAG, Manners JM (1996) Molecular evidence for chromosome transfer between biotypes of Colletotrichum gloeosporioides. Mol Plant Microbe Interact 9(5):339–348.  https://doi.org/10.1094/MPMI-9-0339 CrossRefGoogle Scholar
  110. Menat J, Cabral AL, Vijayan P, Wei Y, Banniza S (2012) Glomerella truncata: another Glomerella species with an atypical mating system. Mycologia 104(3):641–649.  https://doi.org/10.3852/10-265 CrossRefPubMedGoogle Scholar
  111. Menat J, Armstrong-Cho C, Banniza S (2016) Lack of evidence for sexual reproduction infield populations of Colletotrichum lentis. Fungal Ecol 20:66–74.  https://doi.org/10.1016/j.funeco.2015.11.001 CrossRefGoogle Scholar
  112. Meng Y, Gleason ML, Zhang R, Sun G (2019) Genome sequence resource of the wide-host-range anthracnose pathogen Colletotrichum siamense. Mol Plant Microbe Interact 32(8):931-934.  https://doi: 10.1094/MPMI-01-19-0010-ACrossRefGoogle Scholar
  113. Moraga J, Gomes W, Pinedo C, Cantoral JM, Hanso JR, Carbún M, Garriso C, Durán-Patrón R, Collado IG (2019) The current status on secondary metabolites produced by plant pathogenic Colletotrichum species. Phytochem Rev 18(1):215–239.  https://doi.org/10.1007/s11101-018-9590-0 CrossRefGoogle Scholar
  114. Münch S, Lingner U, Floss DS, Ludwig N, Sauer N, Deising HB (2008) The hemibiotrophic lifestyle of Colletotrichum species. J Plant Physiol 165:41–51.  https://doi.org/10.1016/j.jplph.2007.06.008 CrossRefPubMedGoogle Scholar
  115. Nakamura M, Fujikawa T, Nakamori D, Iwai H (2018) Draft genome sequence of Colletotrichum sansevieriae Sa-1–2, the anthracnose pathogen of Sansevieria trifasciata. Data Brief 18:691–695.  https://doi.org/10.1016/j.dib.2018.03.083 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Ntahimpera N, Madden LV, Wilson LL (1997) Effect of rain distribution alteration on splash dispersal of Colletotrichum acutatum. Phytopathology 87(6):649–655.  https://doi.org/10.1094/PHYTO.1997.87.6.649 CrossRefPubMedGoogle Scholar
  117. O’Connell RJ, Bailey JA, Richmond DV (1985) Cytology and physiology of infection of Phaseolus vulgaris by Colletotrichum lindemuthianum. Physiol Plant Pathol 27:75–98.  https://doi.org/10.1016/0048-4059(85)90058-X CrossRefGoogle Scholar
  118. O’Connell RJ, Uronu AB, Waksman G, Nash C, Keon JPR, Bailey JÁ (1993) Hemibiotrophic infection of Pisum sativum by Colletotrichum truncatum. Plant Pathol 42(5):774–783.  https://doi.org/10.1111/j.1365-3059.1993.tb01564.x CrossRefGoogle Scholar
  119. O’Connell RJ, Thon MR, Hacquard S, Amyotte SG, Kleemann J, Torres MF, Damm U, Buiate EA, Epstein L, Alkan N, Altmüller J, Alvarado-Balderrama L, Bauser CA, Becker C, Birren BW, Chen Z, Choi J, Crouch JA, Duvick JP, Farman MA, Gan P, Heiman D, Henrissat B, Howard RJ, Kabbage M, Koch C, Kracher B, Kubo Y, Law AD, Lebrun M-H, Lee Y-H, Miyara I, Moore N, Neumann U, Nordström K, Panaccione DG, Panstruga R, Place M, Proctor RH, Prusky D, Rech G, Reinhardt R, Rollins JA, Rounsley S, Schardl CL, Schwartz DC, Shenoy N, Shirasu K, Sikhakolli UR, Stüber K, Sukno SA, Sweigard JA, Takano Y, Takahara H, Trail F, van der Does HC, Voll LM, Will I, Young S, Zeng Q, Zhang J, Zhou S, Dickman MB, Schulze-Lefert P, Ver L v, Themaat E, Ma L-J, Vaillancourt LJ (2012) Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat Genet 44:1060–1065.  https://doi.org/10.1038/ng.2372 CrossRefPubMedGoogle Scholar
  120. Paccola-Meirelles LD, Azevedo JL (1991) Parasexuality in Beauveria bassiana. J Invertebr Pathol 57(2):172–176.  https://doi.org/10.1016/0022-2011(91)90113-5 CrossRefGoogle Scholar
  121. Perfect SE, Green JR (2001) Infection structures of biotrophic and hemibiotrophic fungal plant pathogens. Mol Plant Pathol 2(2):101–108.  https://doi.org/10.1046/j.1364-3703.2001.00055.x CrossRefPubMedGoogle Scholar
  122. Plaumann P-L, Schmidpeter J, Dahl M, Taher L, Koch C (2018) A dispensable chromosome is required for virulence in the hemibiotrophic plant pathogen Colletotrichum higginsianum. Front Microbiol 9:1005.  https://doi.org/10.3389/fmicb.2018.01005 CrossRefPubMedPubMedCentralGoogle Scholar
  123. Politis D (1975) The identity of the perfect state of Colletotrichum graminicola. Mycologia 67:56–62.  https://doi.org/10.2307/3758227 CrossRefGoogle Scholar
  124. Pontecorvo G, Roper JA, Chemmonsk M, Macdonald D, Bufton AWJ (1953) The genetics of Aspergillus nidulans. Adv Genet 5:141–238.  https://doi.org/10.1016/S0065-2660(08)60408-3 CrossRefPubMedGoogle Scholar
  125. Promputtha I, Lumyong S, Dhanasekaran V, McKenzie EHC, Hyde KD, Jeewon R (2007) A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microb Ecol 53(4):579–590.  https://doi.org/10.1007/s00248-006-9117-x CrossRefPubMedGoogle Scholar
  126. Queiroz CB, Correia HLN, Santana MF, Batista DS, Vidigal PMP, Brommonschenckel SH, Queiroz MV (2019) The repertoire of effector canditates in Colletotrichum lindemuthianum reveals important information about Colletotrichum genus lifetstyle. Appl Microbiol Biotechnol 103(5):2295–2309.  https://doi.org/10.1007/s00253-019-09639-9 CrossRefGoogle Scholar
  127. Ranathunge NP, Mongkolporn O, Ford R, Taylor PWJ (2012) Colletotrichum truncatum Pathosystem on Capsicum spp: infection, colonization and defence mechanisms. Australas Plant Pathol 41(5):463–473.  https://doi.org/10.1007/s13313-012-0156-0 CrossRefGoogle Scholar
  128. Rao S, Nandineni MR (2017) Genome sequencing and comparative genomics reveal a repertoire of putative pathogenicity genes in chilli anthracnose fungus Colletotrichum truncatum. PLoS ONE 12(8):e0183567.  https://doi.org/10.1371/journal.pone.0183567 CrossRefPubMedPubMedCentralGoogle Scholar
  129. Rao S, Sharda S, Oddi V, Nandineni MR (2018) The landscape of repetitive elements in the refined genome of chilli anthracnose fungus Colletotrichum truncatum. Front Microbiol 9:1–19.  https://doi.org/10.3389/fmicb.2018.02367 CrossRefGoogle Scholar
  130. Ritterband D, Shah M, Seedor J (1997) Colletotrichum graminicola: a new corneal pathogen. Cornea 16(3):362–364CrossRefGoogle Scholar
  131. Roca MG, Davide LC, Mendes-Costa MC, Wheals A (2003) Conidial anastomoses tubes in Colletotrichum. Fungal Genet Biol 40(2):138–145.  https://doi.org/10.1016/S1087-1845(03)00088-4 CrossRefPubMedGoogle Scholar
  132. Roca MG, Davide LC, Davide LMC, Mendes-Costa MC, Schwan RF, Wheals AE (2004) Conidial anastomosis fusion between Colletotrichum species. Mycol Res 108(11):1320–1326.  https://doi.org/10.1017/S0953756204000838 CrossRefPubMedGoogle Scholar
  133. Rodriguez-Guerra R, Ramírez-Rueda MT, Cabral-Enciso M, García-Serrano M, Lira-Maldonado Z, Guevara-González RG, González-Chavira M, Simpson J (2005) Heterothallic mating observed between Mexican isolates of Glomerella lindemuthiana. Mycologia 97(4):793–803.  https://doi.org/10.1080/15572536.2006.11832771 CrossRefPubMedGoogle Scholar
  134. Romano N, Macino G (1992) Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol 6(22):3343–3353.  https://doi.org/10.1111/j.1365-2958.1992.tb02202.x CrossRefPubMedGoogle Scholar
  135. Rosada LJ, Franco CCS, Sant’Anna JR, Kaneshima EM, Gonçalves-VidigaL MC, Castro-Prado MAA (2010) Parasexuality in Race 65 Colletotrichum lindemuthianum isolates. J Eukaryot Microbiol 57(4):383–338.  https://doi.org/10.1111/j.1550-7408.2010.00486.x CrossRefPubMedGoogle Scholar
  136. Santana MF, Silva JCF, Batista AD, Ribeiro LE, Silva GF, Araújo EF, Queiroz MV (2012) Abundance, distribution and potential impact of transposable elements in the genome of Mycosphaerella fijiensis. BMC Genomics 13:720.  https://doi.org/10.1186/1471-2164-13-720 CrossRefPubMedPubMedCentralGoogle Scholar
  137. Santos LV, Queiroz MV, Santana MF, Soares MA, Barros EG, Araújo EF, Langin T (2012) Development of new molecular markers for the Colletotrichum genus using RetroCl1 sequences. World J Microbiol Biotechnol 28(3):1087–1095.  https://doi.org/10.1007/s11274-011-0909-x CrossRefPubMedGoogle Scholar
  138. Schena L, Mosca S, Cacciola SO, Faedda R, Sanzani SM, Agosteo GE, Sergeeva V, Magnano di San Lio G (2014) Species of the Colletotrichum gloeosporioides and C. boninense complexes associated with olive anthracnose. Plant Pathol 63(2):437–446.  https://doi.org/10.1111/ppa.12110 CrossRefGoogle Scholar
  139. Selker EU, Stevens JN (1987) Signal for DNA methylation associated with tandem duplication in Neurospora crassa. Mol Cell Biol 7(3):1032–1038.  https://doi.org/10.1128/MCB.7.3.1032 CrossRefPubMedPubMedCentralGoogle Scholar
  140. Selker EU (1990) Premeiotic instability of repeated sequences in Neurospora crassa. Annu Rev Genet 24:579–613.  https://doi.org/10.1146/annurev.ge.24.120190.003051 CrossRefPubMedGoogle Scholar
  141. Sharma G, Kumar N, Weir BS, Hyde KD, Shenoy BD (2013) The ApMat marker can resolve Colletotrichum species: a case study with Mangifera indica. Fungal Divers 61:117–138.  https://doi.org/10.1007/s13225-013-0247-4 CrossRefGoogle Scholar
  142. Shiu PK, Raju NB, Zickler D, Metzenberg RL (2001) Meiotic silencing by unpaired DNA. Cell 107(7):905–916.  https://doi.org/10.1016/s0092-8674(01)00609-2 CrossRefPubMedGoogle Scholar
  143. Shivaprakash MR, Appannanavar SB, Dhaliwal M, Gupta A, Gupta S, Gupta A, Chakrabarti A (2011) Colletotrichum truncatum: an unusual pathogen causing mycotic keratitis and endophthalmitis. J Clin Microbiol 49(8):2894–2898.  https://doi.org/10.1128/JCM.00151-11 CrossRefPubMedPubMedCentralGoogle Scholar
  144. Sieber TN (2007) Endophytic fungi in forest trees: are they mutualists? Fungal Biol Rev 21(2-3):75–89.  https://doi.org/10.1016/j.fbr.2007.05.004 CrossRefGoogle Scholar
  145. Silva Junior WJ, Falcão RM, de Sousa-Paula LC, Sbaraini N, Vieira WADS, Lima WG, SSL PJ, Staats CC, Schrank A, Benko-Iseppon AM, Balbino VQ, MPS C (2018) Draft genome assembly of Colletotrichum musae, the pathogen of banana fruit. Data Brief 17:256–260.  https://doi.org/10.1016/j.dib.2018.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  146. Souza-Paccola EA, Fávaro LCL, Casel CR, Paccola-Meirelles LD (2003) Genetic Recombination in Colletotrichum sublineolum. J Phytopathology 151(6):329–334.  https://doi.org/10.1046/j.1439-0434.2003.00727.x CrossRefGoogle Scholar
  147. Squissato V, Yucel YH, Richardson SE, Alkhotani A, Wong DT, Nijhawan N, Chan CC (2015) Colletotrichum truncatum species complex: treatment considerations and review of the literature for an unusual pathogen causing fungal keratitis and endophthalmitis. Med Mycol Case Rep 9:1–6.  https://doi.org/10.1016/j.mmcr.2015.06.001 CrossRefPubMedPubMedCentralGoogle Scholar
  148. Sun X, Xu Q, Ruan R, Zhang T, Zhu C, Li H (2013) PdMLE1, a specific and active transposon acts as a promoter and confers Penicillium digitatum with DMI resistance. Environ Microbiol Rep 5(1):135–142.  https://doi.org/10.1111/1758-2229.12012 CrossRefPubMedGoogle Scholar
  149. Suryanarayanan TS, Murali TS (2006) Incidence of Leptosphaerulina crassiasca in symptomless leaves of peanut in Southern India. J Basic Microbiol 46(4):305–309.  https://doi.org/10.1002/jobm.200510126 CrossRefPubMedGoogle Scholar
  150. Sutton TB, Shane WW (1983) Epidemiology of the perfect stage of Glomerella cingulata on apples. Phytopathology 73:1179–1183.  https://doi.org/10.1094/Phyto-73-1179 CrossRefGoogle Scholar
  151. Talhinhas P, Gonçalves E, Sreenivasaprasad S, Oliveira H (2015) Virulence diversity of anthracnose pathogens (Colletotrichum acutatum and C. gloeosporioides species complexes) on eight olive cultivars commonly grown in Portugal. Eur J Plant Pathol 142:73–83.  https://doi.org/10.1007/s10658-014-0590-7 CrossRefGoogle Scholar
  152. Tao G, Liu Z-Y, Liu F, Gao Y-H, Cai L (2013) Endophytic Colletotrichum species from Bletilla ochracea (Orchidaceae), with descriptions of seven new species. Fungal Divers 61:139–164.  https://doi.org/10.1007/s13225-013-0254-5 CrossRefGoogle Scholar
  153. Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31:21–32.  https://doi.org/10.1006/fgbi.2000.1228 CrossRefPubMedGoogle Scholar
  154. Taylor JW, Branco S, Gao C, Hann-Soden C, Montoya L, Sylvain I, Gladieux P (2017) Sources of fungal genetic variation and associating it with phenotypic diversity. Microbiol Spectrum 5(5):FUNK-0057-2016).  https://doi.org/10.1128/microbiolspec.FUNK-0057-2016
  155. Tsushima A, Gan P, Kumakura N, Narusaka M, Takano Y, Narusaka Y, Shirasu K (2019) Genomic plasticity mediated by transposable elements in the plant pathogenic fungus Colletotrichum higginsianum. Genome Biol Evol 11(5):1487–1500.  https://doi.org/10.1093/gbe/evz087 CrossRefPubMedPubMedCentralGoogle Scholar
  156. Turgeon BG, Yoder OC (2000) Proposed nomenclature for mating type genes of filamentous ascomycetes. Fungal Genet Biol 31:1–5.  https://doi.org/10.1006/fgbi.2000.1227 CrossRefPubMedGoogle Scholar
  157. Urquhart AS, Mondo SJ, Makela MR, Hane JK, Wiebenga A, He G, Mihaltcheva S, Pangilinan J, Lipzen A, Barry K, Vries RP, Grigov IV, Idnurm A (2018) Genomic and genetic insights into a cosmopolitan fungus, Paecilomyces varioti (Eurotiales). Front Microbiol 9:3058.  https://doi.org/10.3389/fmicb.2018.03058 CrossRefPubMedPubMedCentralGoogle Scholar
  158. Vaillancourt LJ, Hanau RM (1991) A method for genetic analysis of Glomerella graminicola (Colletotrichum graminicola) from maize. Phytopathology 81(5):530–534.  https://doi.org/10.1094/Phyto-81-530 CrossRefGoogle Scholar
  159. Vaillancourt LJ, Hanau RM (1994) Nitrate-nonutilizing mutants used to study heterokaryosis and vegetative compatibility in Glomerella graminicola (Colletotrichum graminicola). Exp Mycol 18(4):311–319.  https://doi.org/10.1016/S0147-5975(06)80004-6 CrossRefGoogle Scholar
  160. Vaillancourt L, Du M, Wang J, Rollins J, Hanau (2000) Genetic analysis of cross fertility between two self-sterile strains of Glomerella graminicola. Mycologia 92(3):430–435.  https://doi.org/10.1080/00275514.2000.12061178 CrossRefGoogle Scholar
  161. Varzeaa VMP, Rodrigues CJ Jr, Lewis BG (2002) Distinguishing characteristics and vegetative compatibility of Colletotrichum kahawae in comparison with other related species from coffee. Plant Pathol 51(2):202–207.  https://doi.org/10.1046/j.1365-3059.2002.00622.x CrossRefGoogle Scholar
  162. Vettraino AM, Paolacci A, Vannini A (2005) Endophytism of Sclerotinia pseudotuberosa: PCR assay for specific detection in chestnut tissues. Mycol Res 109:96–102CrossRefGoogle Scholar
  163. Viswanathan R, Prasanth CN, Malathi P, Sundar AR (2016) Draft genome sequence of Colletotrichum falcatum - a prelude on screening of red rot pathogen in sugarcane. J Genomics 4:1–3.  https://doi.org/10.7150/jgen.13585 CrossRefPubMedPubMedCentralGoogle Scholar
  164. Weir BS, Johnston PR, Damm U (2012) The Colletotrichum gloeosporioides species complex. Stud Mycol 73:115–180.  https://doi.org/10.3114/sim0011 CrossRefPubMedPubMedCentralGoogle Scholar
  165. Wharton PS, Julian AM (1996) A cytological study of compatible and incompatible interactions between Sorghum bicolor and Colletotrichum sublineolum. New Phytol 134:25–34.  https://doi.org/10.1111/j.1469-8137.1996.tb01143.x CrossRefGoogle Scholar
  166. Wheeler HE (1954) Genetics and evolution of heterothallism in Glomerella. Am J Bot 44:342–345Google Scholar
  167. Wicker T, Sabot F, Huan-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nature Rev Genetics 8:973–982.  https://doi.org/10.1038/nrg2165 CrossRefGoogle Scholar
  168. Zhao M, Qiu H, Jiang H, Zhang Z, Mao X, Wang J, Chai R, Wang Y, Sun G (2012) Optimization of fermentation conditions of biocontrol strain Col-68 Colletotrichum hanaui against Digitaria sanguinalis. Acta Agric Zhejiangensis 24:459–463Google Scholar
  169. Zhu P, Oudemans PV (2000) A long terminal repeat retrotransposon Cgret from the phytopathogenic fungus Colletotrichum gloeosporioides on cranberry. Curr Genet 38(5):241–247.  https://doi.org/10.1007/s002940000162 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Laboratório de Genética Molecular de Fungos, Departamento de Microbiologia/Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO)Universidade Federal de ViçosaViçosaBrazil

Personalised recommendations