Advertisement

A tandem GGDEF-EAL domain protein-regulated c-di-GMP signal contributes to spoilage-related activities of Shewanella baltica OS155

  • 31 Accesses

Abstract

Cyclic diguanylate (c-di-GMP) is a second messenger involved in the regulation of various physiological processes in bacteria. However, its function in spoilage bacteria has not yet been addressed. Here, we studied the function of a tandem GGDEF-EAL domain protein, Sbal_3235, in the spoilage bacterium Shewanella baltica OS155. The deletion of sbal_3235 significantly reduced the c-di-GMP level, biofilm formation, and exopolysaccharide, trimethylamine (TMA), and putrescine production; sbal_3235 deletion also downregulated the expression of the torS and speF genes and affected membrane fatty acid composition. Site-directed mutagenesis in conserved GGDEF and EAL motifs abolished diguanylate cyclase (DGC) and phosphodiesterase (PDE) activity, respectively. These data indicate that Sbal_3235 is an essential contributor to the c-di-GMP pool with bifunctional DGC and PDE activity, which is involved in the biofilm formation and spoilage activity of S. baltica OS155. Our findings expand the biochemical role of c-di-GMP and uncover its link to spoilage activities, providing novel targets for food quality and safety controlling.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Bai AJ, Rai Vittal R (2014) Quorum sensing regulation and inhibition of exoenzyme production and biofilm formation in the food spoilage bacteria Pseudomonas psychrophila PSPF19. Food Biotechnol 28(4):293–308. https://doi.org/10.1080/08905436.2014.963601

  2. Ben-Gigirey B, Vieites Baptista deSousa JM, Villa TG, Barros-Velazquez J (1998) Changes in biogenic amines and microbiological analysis in albacore (Thunnus alalunga) muscle during frozen storage. J Food Prot 61(5):608–615

  3. Benkerroum N (2016) Biogenic amines in dairy products: origin, incidence, and control means. Compr Rev Food Sci F 15(4):801–826

  4. Bharati BK, Sharma IM, Kasetty S, Kumar M, Mukherjee R, Chatterji D (2012) A full-length bifunctional protein involved in c-di-GMP turnover is required for long-term survival under nutrient starvation in Mycobacterium smegmatis. Microbiology 158(Pt 6):1415–1427. https://doi.org/10.1099/mic.0.053892-0

  5. Bobrov AG, Kirillina O, Ryjenkov DA, Waters CM, Price PA, Fetherston JD, Mack D, Goldman WE, Gomelsky M, Perry RD (2011) Systematic analysis of cyclic di-GMP signalling enzymes and their role in biofilm formation and virulence in Yersinia pestis. Mol Microbiol 79(2):533–551. https://doi.org/10.1111/j.1365-2958.2010.07470.x

  6. Bogdanove AJ, Koebnik R, Lu H, Furutani A, Angiuoli SV, Patil PB, Van Sluys MA, Ryan RP, Meyer DF, Han SW, Aparna G, Rajaram M, Delcher AL, Phillippy AM, Puiu D, Schatz MC, Shumway M, Sommer DD, Trapnell C, Benahmed F, Dimitrov G, Madupu R, Radune D, Sullivan S, Jha G, Ishihara H, Lee SW, Pandey A, Sharma V, Sriariyanun M, Szurek B, Vera-Cruz CM, Dorman KS, Ronald PC, Verdier V, Dow JM, Sonti RV, Tsuge S, Brendel VP, Rabinowicz PD, Leach JE, White FF, Salzberg SL (2011) Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic Xanthomonas spp. J Bacteriol 193(19):5450–5464. https://doi.org/10.1128/JB.05262-11

  7. Brettar I, Christen R, Manfred GH (2002) Shewanella denitrificans sp nov., a vigorously denitrifying bacterium isolated from the oxic-anoxic interface of the Gotland Deep in the central Baltic Sea. Int J Syst Evol Microbiol 52(Pt 6):2211–2217. https://doi.org/10.1099/ijs.0.02255-0

  8. Burr T, Barnard AML, Corbett MJ, Pemberton CL, Simpson NJL, Salmond GPC (2006) Identification of the central quorum sensing regulator of virulence in the enteric phytopathogen, Erwinia carotovora: the VirR repressor. Mol Microbiol 59(6):1891–1891. https://doi.org/10.1111/j.1365-2958.2006.05052.x

  9. Chinivasagam HN, Bremner HA, Wood AF, Nottingham SM (1998) Volatile components associated with bacterial spoilage of tropical prawns. Int J Food Microbiol 42(1–2):45–55. https://doi.org/10.1016/S0168-1605(98)00057-9

  10. Christensen AB, Riedel K, Eberl L, Flodgaard LR, Molin S, Gram L, Givskov M (2003) Quorum-sensing-directed protein expression in Serratia proteamaculans B5a. Microbiology 149(Pt 2):471–483. https://doi.org/10.1099/mic.0.25575-0

  11. Djordjevic D, Wiedmann M, McLandsborough LA (2002) Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl Environ Microbiol 68(6):2950–2958. https://doi.org/10.1128/aem.68.6.2950-2958.2002

  12. Dubois-Brissonnet F, Trotier E, Briandet R (2016) The biofilm lifestyle involves an increase in bacterial membrane saturated fatty acids. Front Microbiol 7:1673. https://doi.org/10.3389/fmicb.2016.01673

  13. Duerig A, Abel S, Folcher M, Nicollier M, Schwede T, Amiot N, Giese B, Jenal U (2009) Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression. Genes Dev 23(1):93–104. https://doi.org/10.1101/gad.502409

  14. Dyer WJ (1945) Amines in fish muscle: I. Colorimetric determination of trimethylamine as the picrate salt. J Fish Res Bd Can 6(5):351–358

  15. Fang H, Xu L, Chan K (2002) Effects of toxic metals and chemicals on biofilm and biocorrosion. Water Res 36(19):4709–4716. https://doi.org/10.1016/S0043-1354(02)00207-5

  16. Ferreira RB, Antunes LC, Greenberg EP, McCarter LL (2008) Vibrio parahaemolyticus ScrC modulates cyclic dimeric GMP regulation of gene expression relevant to growth on surfaces. J Bacteriol 190(3):851–860. https://doi.org/10.1128/JB.01462-07

  17. Fu L, Wang C, Liu N, Ma A, Wang Y (2018) Quorum sensing system-regulated genes affect the spoilage potential of Shewanella baltica. Food Res Int 107:1–9. https://doi.org/10.1016/j.foodres.2018.01.067

  18. Galperin MY, Nikolskaya AN, Koonin EV (2001) Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett 203(1):11–21. https://doi.org/10.1111/j.1574-6968.2001.tb10814.x

  19. Gao W, Liu Y, Giometti CS, Tollaksen SL, Khare T, Wu L, Klingeman DM, Fields MW, Zhou J (2006) Knock-out of SO1377 gene, which encodes the member of a conserved hypothetical bacterial protein family COG2268, results in alteration of iron metabolism, increased spontaneous mutation and hydrogen peroxide sensitivity in Shewanella oneidensis MR-1. BMC Genomics 7:76. https://doi.org/10.1186/1471-2164-7-76

  20. Gram L, Trolle G, Huss HH (1987) Detection of specific spoilage bacteria from fish stored at low (0°C) and high (20°C) temperatures. Int J Food Microbiol 4(1):72. https://doi.org/10.1016/0168-1605(87)90060-2

  21. Gu Q, Fu L, Wang Y, Lin J (2013) Identification and characterization of extracellular cyclic dipeptides as quorum-sensing signal molecules from Shewanella baltica, the specific spoilage organism of Pseudosciaena crocea during 4 degrees C storage. J Agric Food Chem 61(47):11645–11652. https://doi.org/10.1021/jf403918x

  22. Hengge R (2009) Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7(4):263–273. https://doi.org/10.1038/nrmicro2109

  23. Hozbor MC, Saiz AI, Yeannes MI, Fritz R (2006) Microbiological changes and its correlation with quality indices during aerobic iced storage of sea salmon (Pseudopercis semifasciata). LWT - Food Sci Technol 39(2):99–104. https://doi.org/10.1016/j.lwt.2004.12.008

  24. Jenal U, Malone J (2006) Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev of Genet 40(1):385–407. https://doi.org/10.1146/annurev.genet.40.110405.090423

  25. Jin M, Jiang Y, Sun L, Yin J, Fu H, Wu G, Gao H (2013) Unique organizational and functional features of the cytochrome c maturation system in Shewanella oneidensis. PLoS One 8(9):e75610. https://doi.org/10.1371/journal.pone.0075610

  26. Kim MK, Mah JH, Hwang HJ (2009) Biogenic amine formation and bacterial contribution in fish, squid and shellfish. Food Chem 116(1):87–95. https://doi.org/10.1016/j.foodchem.2009.02.010

  27. Kirillina O, Fetherston JD, Bobrov AG, Abney J, Perry RD (2004) HmsP, a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis. Mol Microbiol 54(1):75–88. https://doi.org/10.1111/j.1365-2958.2004.04253.x

  28. Kleber JT, Becker WM (2000) Use of modified BL21 (DE3) Escherichia coli cells for high-level expression of recombinant peanut allergens affected by poor codon usage. Protein Expr Purif 19(3):419–424. https://doi.org/10.1006/prep.2000.1265

  29. Kulasakara H, Lee V, Brencic A, Liberati N, Urbach J, Miyata S, Lee DG, Neely AN, Hyodo M, Hayakawa Y, Ausubel FM, Lory S (2006) Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3′-5′)-cyclic-GMP in virulence. Proc Natl Acad Sci U S A 103(8):2839–2844. https://doi.org/10.1073/pnas.0511090103

  30. Lamprokostopoulou A, Monteiro C, Rhen M, Römling U (2010) Cyclic di-GMP signalling controls virulence properties of Salmonella enterica serovar Typhimurium at the mucosal lining. Environ Microbiol 12(1):40–53. https://doi.org/10.1111/j.1462-2920.2009.02032.x

  31. Levet-Paulo M, Lazzaroni JC, Gilbert C, Atlan D, Doublet P, Vianney A (2011) The atypical two-component sensor kinase Lpl0330 from Legionella pneumophila controls the bifunctional diguanylate cyclase-phosphodiesterase Lpl0329 to modulate bis-(3′-5′)-cyclic dimeric GMP synthesis. J Biol Chem 286(36):31136–31144. https://doi.org/10.1074/jbc.M111.231340

  32. Li L, Wen X, Wen Z, Chen S, Wang L, Wei X (2018) Evaluation of the biogenic amines formation and degradation abilities of Lactobacillus curvatus from Chinese bacon. Front Microbiol 9:1015. https://doi.org/10.3389/fmicb.2018.01015

  33. Liu N, Pak T, Boon EM (2010) Characterization of a diguanylate cyclase from Shewanella woodyi with cyclase and phosphodiesterase activities. Mol BioSyst 6(9):1561–1564. https://doi.org/10.1039/c002246b

  34. Méchin L, Dubois-Brissonnet F, Heyd B, Leveau JY (2010) Adaptation of Pseudomonas aeruginosa ATCC 15442 to didecyldimethylammonium bromide induces changes in membrane fatty acid composition and in resistance of cells. J Appl Microbiol 86(5):859–866. https://doi.org/10.1046/j.1365-2672.1999.00770.x

  35. Mills E, Pultz IS, Kulasekara HD, Miller SI (2011) The bacterial second messenger c-di-GMP: mechanisms of signalling. Cell Microbiol 13(8):1122–1129. https://doi.org/10.1111/j.1462-5822.2011.01619.x

  36. Nicol M, Alexandre S, Luizet JB, Skogman M, Jouenne T, Salcedo SP, De E (2018) Unsaturated fatty acids affect quorum sensing communication system and inhibit motility and biofilm formation of Acinetobacter baumannii. Int J Mol Sci 19(1):214. https://doi.org/10.3390/ijms19010214

  37. Pantazi D, Papavergou A, Pournis N, Kontominas MG, Savvaidis IN (2008) Shelf-life of chilled fresh Mediterranean swordfish (Xiphias gladius) stored under various packaging conditions: microbiological, biochemical and sensory attributes. Food Microbiol 25(1):136–143. https://doi.org/10.1016/j.fm.2007.06.006

  38. Parlapani FF, Haroutounian SA, Nychas GJ, Boziaris IS (2015) Microbiological spoilage and volatiles production of gutted European sea bass stored under air and commercial modified atmosphere package at 2 degrees C. Food Microbiol 50:44–53. https://doi.org/10.1016/j.fm.2015.03.006

  39. Pinto UM, de Souza VE, Martins ML, Vanetti MCD (2007) Detection of acylated homoserine lactones in gram-negative proteolytic psychrotrophic bacteria isolated from cooled raw milk. Food Control 18(10):1322–1327. https://doi.org/10.1016/j.foodcont.2006.09.005

  40. Rasch M, Andersen JB, Nielsen KF, Flodgaard LR, Christensen H, Givskov M, Gram L (2005) Involvement of bacterial quorum-sensing signals in spoilage of bean sprouts. Appl Environ Microbiol 71(6):3321–3330. https://doi.org/10.1128/AEM.71.6.3321-3330.2005

  41. Romling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77(1):1–52. https://doi.org/10.1128/MMBR.00043-12

  42. Ross P, Weinhouse H, Aloni Y, Michaeli D, Weinberger-Ohana P, Mayer R (1987) Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325(6101):279–281. https://doi.org/10.1038/325279a0

  43. Ryan R, Fouhy Y, Lucey J, Jiang B, Yq FJ, Tang J, Dow J (2010) Cyclic di-GMP signalling in the virulence and environmental adaptation of Xanthomonas campestris. Mol Microbiol 63(2):429–442. https://doi.org/10.1111/mmi.13683

  44. Salzberg SL, Sommer DD, Schatz MC, Phillippy AM, Rabinowicz PD, Tsuge S, Furutani A, Ochiai H, Delcher AL, Kelley D, Madupu R, Puiu D, Radune D, Shumway M, Trapnell C, Aparna G, Jha G, Pandey A, Patil PB, Ishihara H, Meyer DF, Szurek B, Verdier V, Koebnik R, Dow JM, Ryan RP, Hirata H, Tsuyumu S, Lee S, Seo Y-S, Sriariyanum M, Ronald PC, Sonti RV, Van Sluys M-A, Leach JE, White FF, Bogdanove AJ (2008) Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A. BMC Genomics 9(1) doi:https://doi.org/10.1186/1471-2164-9-534

  45. Shirtliff ME, Mader JT, Camper AK (2002) Molecular interactions in biofilms. Chem Biol 9(8):859–871. https://doi.org/10.1016/S1074-5521(02)00198-9

  46. Simm R, Morr M, Kader A, Nimtz M, Römling U (2004) GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53(4):1123–1134. https://doi.org/10.1111/j.1365-2958.2004.04206.x

  47. Sperandio V, Torres AG, Kaper JB (2010) Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli. Mol Microbiol 43(3):809–821. https://doi.org/10.1046/j.1365-2958.2002.02803.x

  48. Sutherland IW (2001) The biofilm matrix-an immobilized but dynamic microbial environment. Trends Microbiol 9(5):222–227. https://doi.org/10.1016/S0966-842X(01)02012-1

  49. Tarutina M, Ryjenkov DA, Gomelsky M (2006) An unorthodox bacteriophytochrome from Rhodobacter sphaeroides involved in turnover of the second messenger c-di-GMP. J Biol Chem 281(46):34751–34758. https://doi.org/10.1074/jbc.M604819200

  50. Tischler AD, Camilli A (2004) Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Mol Microbiol 53(3):857–869. https://doi.org/10.1111/j.1365-2958.2004.04155.x

  51. Tischler AD, Camilli A (2015) Cyclic diguanylate regulates Vibrio cholerae virulence gene expression. Infect Immun 73(9):5873–5882. https://doi.org/10.1128/IAI.73.9.5873-5882.2005

  52. Tolker-Nielsen T, Molin S (2000) Spatial organization of microbial biofilm communities. Microb Ecol 40(2):75–84. https://doi.org/10.1007/s002480000057

  53. Visick KL, O'Shea TM, Klein AH, Geszvain K, Wolfe AJ (2007) The sugar phosphotransferase system of Vibrio fischeri inhibits both motility and bioluminescence. J Bacteriol 189(6):2571–2574. https://doi.org/10.1128/JB.01761-06

  54. Wang Y, Wang F, Wang C, Li X, Fu L (2019) Positive regulation of spoilage potential and biofilm formation in Shewanella baltica OS155 via quorum sensing system composed of DKP and orphan LuxRs. Front Microbiol 10:135. https://doi.org/10.3389/fmicb.2019.00135

  55. Wei C, Jiang W, Zhao M, Ling J, Zeng X, Deng J (2016) A systematic analysis of the role of GGDEF-EAL domain proteins in virulence and motility in Xanthomonas oryzae pv. oryzicola. Sci Rep 6(1):23769. https://doi.org/10.1038/srep23769

  56. Yi X, Yamazaki A, Biddle E, Zeng Q, Yang CH (2010) Genetic analysis of two phosphodiesterases reveals cyclic diguanylate regulation of virulence factors in Dickeya dadantii. Mol Microbiol 77(3):787–800. https://doi.org/10.1111/j.1365-2958.2010.07246.x

  57. Yoon Y, Lee H, Lee S, Kim S, Choi K-H (2015) Membrane fluidity-related adaptive response mechanisms of foodborne bacterial pathogens under environmental stresses. Food Res Int 72:25–36. https://doi.org/10.1016/j.foodres.2015.03.016

  58. Zhang Y, Wei C, Jiang W, Wang L, Li C, Wang Y, Dow JM, Sun W (2013) The HD-GYP domain protein RpfG of Xanthomonas oryzae pv. oryzicola regulates synthesis of extracellular polysaccharides that contribute to biofilm formation and virulence on rice. PLoS One 8(3):e59428. https://doi.org/10.1371/journal.pone.0059428

  59. Zhu S, Wu H, Zeng M, Liu Z, Wang Y (2015) The involvement of bacterial quorum sensing in the spoilage of refrigerated Litopenaeus vannamei. Int J Food Microbiol 192:26–33. https://doi.org/10.1016/j.ijfoodmicro.2014.09.029

  60. Zhu J, Zhao A, Feng L, Gao H (2016) Quorum sensing signals affect spoilage of refrigerated large yellow croaker (Pseudosciaena crocea) by Shewanella baltica. Int J Food Microbiol 217:146–155. https://doi.org/10.1016/j.ijfoodmicro.2015.10.020

Download references

Author information

Correspondence to Linglin Fu or Yanbo Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1028 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Wang, Y., Cen, C. et al. A tandem GGDEF-EAL domain protein-regulated c-di-GMP signal contributes to spoilage-related activities of Shewanella baltica OS155. Appl Microbiol Biotechnol (2020) doi:10.1007/s00253-020-10357-w

Download citation

Keywords

  • Cyclic diguanylate
  • A tandem GGDEF-EAL domain protein
  • Biofilm formation
  • Exopolysaccharide
  • Spoilage activity
  • Membrane fatty acids