Advertisement

A tandem GGDEF-EAL domain protein-regulated c-di-GMP signal contributes to spoilage-related activities of Shewanella baltica OS155

  • Feifei Wang
  • Yongzheng Wang
  • Congnan Cen
  • Linglin FuEmail author
  • Yanbo WangEmail author
Applied microbial and cell physiology
  • 33 Downloads

Abstract

Cyclic diguanylate (c-di-GMP) is a second messenger involved in the regulation of various physiological processes in bacteria. However, its function in spoilage bacteria has not yet been addressed. Here, we studied the function of a tandem GGDEF-EAL domain protein, Sbal_3235, in the spoilage bacterium Shewanella baltica OS155. The deletion of sbal_3235 significantly reduced the c-di-GMP level, biofilm formation, and exopolysaccharide, trimethylamine (TMA), and putrescine production; sbal_3235 deletion also downregulated the expression of the torS and speF genes and affected membrane fatty acid composition. Site-directed mutagenesis in conserved GGDEF and EAL motifs abolished diguanylate cyclase (DGC) and phosphodiesterase (PDE) activity, respectively. These data indicate that Sbal_3235 is an essential contributor to the c-di-GMP pool with bifunctional DGC and PDE activity, which is involved in the biofilm formation and spoilage activity of S. baltica OS155. Our findings expand the biochemical role of c-di-GMP and uncover its link to spoilage activities, providing novel targets for food quality and safety controlling.

Keywords

Cyclic diguanylate A tandem GGDEF-EAL domain protein Biofilm formation Exopolysaccharide Spoilage activity Membrane fatty acids 

Notes

Funding information

This study was funded by the National Natural Science Foundation of China (grant numbers 31571913 and 31772050).

Supplementary material

253_2020_10357_MOESM1_ESM.docx (1 mb)
ESM 1 (DOCX 1028 kb)

References

  1. Bai AJ, Rai Vittal R (2014) Quorum sensing regulation and inhibition of exoenzyme production and biofilm formation in the food spoilage bacteria Pseudomonas psychrophila PSPF19. Food Biotechnol 28(4):293–308.  https://doi.org/10.1080/08905436.2014.963601 CrossRefGoogle Scholar
  2. Ben-Gigirey B, Vieites Baptista deSousa JM, Villa TG, Barros-Velazquez J (1998) Changes in biogenic amines and microbiological analysis in albacore (Thunnus alalunga) muscle during frozen storage. J Food Prot 61(5):608–615CrossRefGoogle Scholar
  3. Benkerroum N (2016) Biogenic amines in dairy products: origin, incidence, and control means. Compr Rev Food Sci F 15(4):801–826CrossRefGoogle Scholar
  4. Bharati BK, Sharma IM, Kasetty S, Kumar M, Mukherjee R, Chatterji D (2012) A full-length bifunctional protein involved in c-di-GMP turnover is required for long-term survival under nutrient starvation in Mycobacterium smegmatis. Microbiology 158(Pt 6):1415–1427.  https://doi.org/10.1099/mic.0.053892-0 CrossRefPubMedGoogle Scholar
  5. Bobrov AG, Kirillina O, Ryjenkov DA, Waters CM, Price PA, Fetherston JD, Mack D, Goldman WE, Gomelsky M, Perry RD (2011) Systematic analysis of cyclic di-GMP signalling enzymes and their role in biofilm formation and virulence in Yersinia pestis. Mol Microbiol 79(2):533–551.  https://doi.org/10.1111/j.1365-2958.2010.07470.x CrossRefPubMedGoogle Scholar
  6. Bogdanove AJ, Koebnik R, Lu H, Furutani A, Angiuoli SV, Patil PB, Van Sluys MA, Ryan RP, Meyer DF, Han SW, Aparna G, Rajaram M, Delcher AL, Phillippy AM, Puiu D, Schatz MC, Shumway M, Sommer DD, Trapnell C, Benahmed F, Dimitrov G, Madupu R, Radune D, Sullivan S, Jha G, Ishihara H, Lee SW, Pandey A, Sharma V, Sriariyanun M, Szurek B, Vera-Cruz CM, Dorman KS, Ronald PC, Verdier V, Dow JM, Sonti RV, Tsuge S, Brendel VP, Rabinowicz PD, Leach JE, White FF, Salzberg SL (2011) Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic Xanthomonas spp. J Bacteriol 193(19):5450–5464.  https://doi.org/10.1128/JB.05262-11 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brettar I, Christen R, Manfred GH (2002) Shewanella denitrificans sp nov., a vigorously denitrifying bacterium isolated from the oxic-anoxic interface of the Gotland Deep in the central Baltic Sea. Int J Syst Evol Microbiol 52(Pt 6):2211–2217.  https://doi.org/10.1099/ijs.0.02255-0 CrossRefPubMedGoogle Scholar
  8. Burr T, Barnard AML, Corbett MJ, Pemberton CL, Simpson NJL, Salmond GPC (2006) Identification of the central quorum sensing regulator of virulence in the enteric phytopathogen, Erwinia carotovora: the VirR repressor. Mol Microbiol 59(6):1891–1891.  https://doi.org/10.1111/j.1365-2958.2006.05052.x CrossRefGoogle Scholar
  9. Chinivasagam HN, Bremner HA, Wood AF, Nottingham SM (1998) Volatile components associated with bacterial spoilage of tropical prawns. Int J Food Microbiol 42(1–2):45–55.  https://doi.org/10.1016/S0168-1605(98)00057-9 CrossRefPubMedGoogle Scholar
  10. Christensen AB, Riedel K, Eberl L, Flodgaard LR, Molin S, Gram L, Givskov M (2003) Quorum-sensing-directed protein expression in Serratia proteamaculans B5a. Microbiology 149(Pt 2):471–483.  https://doi.org/10.1099/mic.0.25575-0 CrossRefPubMedGoogle Scholar
  11. Djordjevic D, Wiedmann M, McLandsborough LA (2002) Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl Environ Microbiol 68(6):2950–2958.  https://doi.org/10.1128/aem.68.6.2950-2958.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dubois-Brissonnet F, Trotier E, Briandet R (2016) The biofilm lifestyle involves an increase in bacterial membrane saturated fatty acids. Front Microbiol 7:1673.  https://doi.org/10.3389/fmicb.2016.01673 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Duerig A, Abel S, Folcher M, Nicollier M, Schwede T, Amiot N, Giese B, Jenal U (2009) Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression. Genes Dev 23(1):93–104.  https://doi.org/10.1101/gad.502409 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dyer WJ (1945) Amines in fish muscle: I. Colorimetric determination of trimethylamine as the picrate salt. J Fish Res Bd Can 6(5):351–358CrossRefGoogle Scholar
  15. Fang H, Xu L, Chan K (2002) Effects of toxic metals and chemicals on biofilm and biocorrosion. Water Res 36(19):4709–4716.  https://doi.org/10.1016/S0043-1354(02)00207-5 CrossRefPubMedGoogle Scholar
  16. Ferreira RB, Antunes LC, Greenberg EP, McCarter LL (2008) Vibrio parahaemolyticus ScrC modulates cyclic dimeric GMP regulation of gene expression relevant to growth on surfaces. J Bacteriol 190(3):851–860.  https://doi.org/10.1128/JB.01462-07 CrossRefPubMedGoogle Scholar
  17. Fu L, Wang C, Liu N, Ma A, Wang Y (2018) Quorum sensing system-regulated genes affect the spoilage potential of Shewanella baltica. Food Res Int 107:1–9.  https://doi.org/10.1016/j.foodres.2018.01.067 CrossRefPubMedGoogle Scholar
  18. Galperin MY, Nikolskaya AN, Koonin EV (2001) Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett 203(1):11–21.  https://doi.org/10.1111/j.1574-6968.2001.tb10814.x CrossRefPubMedGoogle Scholar
  19. Gao W, Liu Y, Giometti CS, Tollaksen SL, Khare T, Wu L, Klingeman DM, Fields MW, Zhou J (2006) Knock-out of SO1377 gene, which encodes the member of a conserved hypothetical bacterial protein family COG2268, results in alteration of iron metabolism, increased spontaneous mutation and hydrogen peroxide sensitivity in Shewanella oneidensis MR-1. BMC Genomics 7:76.  https://doi.org/10.1186/1471-2164-7-76 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gram L, Trolle G, Huss HH (1987) Detection of specific spoilage bacteria from fish stored at low (0°C) and high (20°C) temperatures. Int J Food Microbiol 4(1):72.  https://doi.org/10.1016/0168-1605(87)90060-2 CrossRefGoogle Scholar
  21. Gu Q, Fu L, Wang Y, Lin J (2013) Identification and characterization of extracellular cyclic dipeptides as quorum-sensing signal molecules from Shewanella baltica, the specific spoilage organism of Pseudosciaena crocea during 4 degrees C storage. J Agric Food Chem 61(47):11645–11652.  https://doi.org/10.1021/jf403918x CrossRefPubMedGoogle Scholar
  22. Hengge R (2009) Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7(4):263–273.  https://doi.org/10.1038/nrmicro2109 CrossRefPubMedGoogle Scholar
  23. Hozbor MC, Saiz AI, Yeannes MI, Fritz R (2006) Microbiological changes and its correlation with quality indices during aerobic iced storage of sea salmon (Pseudopercis semifasciata). LWT - Food Sci Technol 39(2):99–104.  https://doi.org/10.1016/j.lwt.2004.12.008 CrossRefGoogle Scholar
  24. Jenal U, Malone J (2006) Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev of Genet 40(1):385–407.  https://doi.org/10.1146/annurev.genet.40.110405.090423 CrossRefGoogle Scholar
  25. Jin M, Jiang Y, Sun L, Yin J, Fu H, Wu G, Gao H (2013) Unique organizational and functional features of the cytochrome c maturation system in Shewanella oneidensis. PLoS One 8(9):e75610.  https://doi.org/10.1371/journal.pone.0075610 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kim MK, Mah JH, Hwang HJ (2009) Biogenic amine formation and bacterial contribution in fish, squid and shellfish. Food Chem 116(1):87–95.  https://doi.org/10.1016/j.foodchem.2009.02.010 CrossRefGoogle Scholar
  27. Kirillina O, Fetherston JD, Bobrov AG, Abney J, Perry RD (2004) HmsP, a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis. Mol Microbiol 54(1):75–88.  https://doi.org/10.1111/j.1365-2958.2004.04253.x CrossRefPubMedGoogle Scholar
  28. Kleber JT, Becker WM (2000) Use of modified BL21 (DE3) Escherichia coli cells for high-level expression of recombinant peanut allergens affected by poor codon usage. Protein Expr Purif 19(3):419–424.  https://doi.org/10.1006/prep.2000.1265 CrossRefGoogle Scholar
  29. Kulasakara H, Lee V, Brencic A, Liberati N, Urbach J, Miyata S, Lee DG, Neely AN, Hyodo M, Hayakawa Y, Ausubel FM, Lory S (2006) Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3′-5′)-cyclic-GMP in virulence. Proc Natl Acad Sci U S A 103(8):2839–2844.  https://doi.org/10.1073/pnas.0511090103 CrossRefPubMedGoogle Scholar
  30. Lamprokostopoulou A, Monteiro C, Rhen M, Römling U (2010) Cyclic di-GMP signalling controls virulence properties of Salmonella enterica serovar Typhimurium at the mucosal lining. Environ Microbiol 12(1):40–53.  https://doi.org/10.1111/j.1462-2920.2009.02032.x CrossRefPubMedGoogle Scholar
  31. Levet-Paulo M, Lazzaroni JC, Gilbert C, Atlan D, Doublet P, Vianney A (2011) The atypical two-component sensor kinase Lpl0330 from Legionella pneumophila controls the bifunctional diguanylate cyclase-phosphodiesterase Lpl0329 to modulate bis-(3′-5′)-cyclic dimeric GMP synthesis. J Biol Chem 286(36):31136–31144.  https://doi.org/10.1074/jbc.M111.231340 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Li L, Wen X, Wen Z, Chen S, Wang L, Wei X (2018) Evaluation of the biogenic amines formation and degradation abilities of Lactobacillus curvatus from Chinese bacon. Front Microbiol 9:1015.  https://doi.org/10.3389/fmicb.2018.01015 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Liu N, Pak T, Boon EM (2010) Characterization of a diguanylate cyclase from Shewanella woodyi with cyclase and phosphodiesterase activities. Mol BioSyst 6(9):1561–1564.  https://doi.org/10.1039/c002246b CrossRefPubMedGoogle Scholar
  34. Méchin L, Dubois-Brissonnet F, Heyd B, Leveau JY (2010) Adaptation of Pseudomonas aeruginosa ATCC 15442 to didecyldimethylammonium bromide induces changes in membrane fatty acid composition and in resistance of cells. J Appl Microbiol 86(5):859–866.  https://doi.org/10.1046/j.1365-2672.1999.00770.x CrossRefGoogle Scholar
  35. Mills E, Pultz IS, Kulasekara HD, Miller SI (2011) The bacterial second messenger c-di-GMP: mechanisms of signalling. Cell Microbiol 13(8):1122–1129.  https://doi.org/10.1111/j.1462-5822.2011.01619.x CrossRefPubMedGoogle Scholar
  36. Nicol M, Alexandre S, Luizet JB, Skogman M, Jouenne T, Salcedo SP, De E (2018) Unsaturated fatty acids affect quorum sensing communication system and inhibit motility and biofilm formation of Acinetobacter baumannii. Int J Mol Sci 19(1):214.  https://doi.org/10.3390/ijms19010214 CrossRefPubMedCentralGoogle Scholar
  37. Pantazi D, Papavergou A, Pournis N, Kontominas MG, Savvaidis IN (2008) Shelf-life of chilled fresh Mediterranean swordfish (Xiphias gladius) stored under various packaging conditions: microbiological, biochemical and sensory attributes. Food Microbiol 25(1):136–143.  https://doi.org/10.1016/j.fm.2007.06.006 CrossRefPubMedGoogle Scholar
  38. Parlapani FF, Haroutounian SA, Nychas GJ, Boziaris IS (2015) Microbiological spoilage and volatiles production of gutted European sea bass stored under air and commercial modified atmosphere package at 2 degrees C. Food Microbiol 50:44–53.  https://doi.org/10.1016/j.fm.2015.03.006 CrossRefPubMedGoogle Scholar
  39. Pinto UM, de Souza VE, Martins ML, Vanetti MCD (2007) Detection of acylated homoserine lactones in gram-negative proteolytic psychrotrophic bacteria isolated from cooled raw milk. Food Control 18(10):1322–1327.  https://doi.org/10.1016/j.foodcont.2006.09.005 CrossRefGoogle Scholar
  40. Rasch M, Andersen JB, Nielsen KF, Flodgaard LR, Christensen H, Givskov M, Gram L (2005) Involvement of bacterial quorum-sensing signals in spoilage of bean sprouts. Appl Environ Microbiol 71(6):3321–3330.  https://doi.org/10.1128/AEM.71.6.3321-3330.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Romling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77(1):1–52.  https://doi.org/10.1128/MMBR.00043-12 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Ross P, Weinhouse H, Aloni Y, Michaeli D, Weinberger-Ohana P, Mayer R (1987) Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325(6101):279–281.  https://doi.org/10.1038/325279a0 CrossRefPubMedGoogle Scholar
  43. Ryan R, Fouhy Y, Lucey J, Jiang B, Yq FJ, Tang J, Dow J (2010) Cyclic di-GMP signalling in the virulence and environmental adaptation of Xanthomonas campestris. Mol Microbiol 63(2):429–442.  https://doi.org/10.1111/mmi.13683 CrossRefGoogle Scholar
  44. Salzberg SL, Sommer DD, Schatz MC, Phillippy AM, Rabinowicz PD, Tsuge S, Furutani A, Ochiai H, Delcher AL, Kelley D, Madupu R, Puiu D, Radune D, Shumway M, Trapnell C, Aparna G, Jha G, Pandey A, Patil PB, Ishihara H, Meyer DF, Szurek B, Verdier V, Koebnik R, Dow JM, Ryan RP, Hirata H, Tsuyumu S, Lee S, Seo Y-S, Sriariyanum M, Ronald PC, Sonti RV, Van Sluys M-A, Leach JE, White FF, Bogdanove AJ (2008) Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A. BMC Genomics 9(1) doi: https://doi.org/10.1186/1471-2164-9-534 CrossRefGoogle Scholar
  45. Shirtliff ME, Mader JT, Camper AK (2002) Molecular interactions in biofilms. Chem Biol 9(8):859–871.  https://doi.org/10.1016/S1074-5521(02)00198-9 CrossRefPubMedGoogle Scholar
  46. Simm R, Morr M, Kader A, Nimtz M, Römling U (2004) GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53(4):1123–1134.  https://doi.org/10.1111/j.1365-2958.2004.04206.x CrossRefPubMedGoogle Scholar
  47. Sperandio V, Torres AG, Kaper JB (2010) Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli. Mol Microbiol 43(3):809–821.  https://doi.org/10.1046/j.1365-2958.2002.02803.x CrossRefGoogle Scholar
  48. Sutherland IW (2001) The biofilm matrix-an immobilized but dynamic microbial environment. Trends Microbiol 9(5):222–227.  https://doi.org/10.1016/S0966-842X(01)02012-1 CrossRefPubMedGoogle Scholar
  49. Tarutina M, Ryjenkov DA, Gomelsky M (2006) An unorthodox bacteriophytochrome from Rhodobacter sphaeroides involved in turnover of the second messenger c-di-GMP. J Biol Chem 281(46):34751–34758.  https://doi.org/10.1074/jbc.M604819200 CrossRefPubMedGoogle Scholar
  50. Tischler AD, Camilli A (2004) Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Mol Microbiol 53(3):857–869.  https://doi.org/10.1111/j.1365-2958.2004.04155.x CrossRefPubMedPubMedCentralGoogle Scholar
  51. Tischler AD, Camilli A (2015) Cyclic diguanylate regulates Vibrio cholerae virulence gene expression. Infect Immun 73(9):5873–5882.  https://doi.org/10.1128/IAI.73.9.5873-5882.2005 CrossRefGoogle Scholar
  52. Tolker-Nielsen T, Molin S (2000) Spatial organization of microbial biofilm communities. Microb Ecol 40(2):75–84.  https://doi.org/10.1007/s002480000057 CrossRefPubMedGoogle Scholar
  53. Visick KL, O'Shea TM, Klein AH, Geszvain K, Wolfe AJ (2007) The sugar phosphotransferase system of Vibrio fischeri inhibits both motility and bioluminescence. J Bacteriol 189(6):2571–2574.  https://doi.org/10.1128/JB.01761-06 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Wang Y, Wang F, Wang C, Li X, Fu L (2019) Positive regulation of spoilage potential and biofilm formation in Shewanella baltica OS155 via quorum sensing system composed of DKP and orphan LuxRs. Front Microbiol 10:135.  https://doi.org/10.3389/fmicb.2019.00135 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Wei C, Jiang W, Zhao M, Ling J, Zeng X, Deng J (2016) A systematic analysis of the role of GGDEF-EAL domain proteins in virulence and motility in Xanthomonas oryzae pv. oryzicola. Sci Rep 6(1):23769.  https://doi.org/10.1038/srep23769 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Yi X, Yamazaki A, Biddle E, Zeng Q, Yang CH (2010) Genetic analysis of two phosphodiesterases reveals cyclic diguanylate regulation of virulence factors in Dickeya dadantii. Mol Microbiol 77(3):787–800.  https://doi.org/10.1111/j.1365-2958.2010.07246.x CrossRefPubMedGoogle Scholar
  57. Yoon Y, Lee H, Lee S, Kim S, Choi K-H (2015) Membrane fluidity-related adaptive response mechanisms of foodborne bacterial pathogens under environmental stresses. Food Res Int 72:25–36.  https://doi.org/10.1016/j.foodres.2015.03.016 CrossRefGoogle Scholar
  58. Zhang Y, Wei C, Jiang W, Wang L, Li C, Wang Y, Dow JM, Sun W (2013) The HD-GYP domain protein RpfG of Xanthomonas oryzae pv. oryzicola regulates synthesis of extracellular polysaccharides that contribute to biofilm formation and virulence on rice. PLoS One 8(3):e59428.  https://doi.org/10.1371/journal.pone.0059428 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Zhu S, Wu H, Zeng M, Liu Z, Wang Y (2015) The involvement of bacterial quorum sensing in the spoilage of refrigerated Litopenaeus vannamei. Int J Food Microbiol 192:26–33.  https://doi.org/10.1016/j.ijfoodmicro.2014.09.029 CrossRefPubMedGoogle Scholar
  60. Zhu J, Zhao A, Feng L, Gao H (2016) Quorum sensing signals affect spoilage of refrigerated large yellow croaker (Pseudosciaena crocea) by Shewanella baltica. Int J Food Microbiol 217:146–155.  https://doi.org/10.1016/j.ijfoodmicro.2015.10.020 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Food Safety Key Laboratory of Zhejiang Province, School of Food Science and BiotechnologyZhejiang Gongshang UniversityHangzhouPeople’s Republic of China
  2. 2.Zhejiang Engineering Institute of Food Quality and SafetyZhejiang Gongshang UniversityHangzhouPeople’s Republic of China

Personalised recommendations