Advertisement

Combination of the CRP mutation and ptsG deletion in Escherichia coli to efficiently synthesize xylitol from corncob hydrolysates

  • Xinsong Yuan
  • Shuai Tu
  • Jianping Lin
  • Lirong Yang
  • Huahao Shen
  • Mianbin WuEmail author
Biotechnological products and process engineering

Abstract

The biotechnology-based production of xylitol has received widespread attention because it can use cheap and renewable lignocellulose as a raw material, thereby decreasing costs and pollution. The simultaneous use of various sugars in lignocellulose hydrolysates is a primary prerequisite for efficient xylitol production. In this study, a ΔptsG and crp* combinatorial strategy was used to generate Escherichia coli W3110 strain IS5-dI, which completely eliminated glucose repression and simultaneously used glucose and xylose. This strain produced 164 g/L xylitol from detoxified corncob hydrolysates during a fed-batch fermentation in a 15-L bioreactor, which was 14.7% higher than the xylitol produced by the starting strain, IS5-d (143 g/L), and the xylitol productivity was 3.04 g/L/h. These results represent the highest xylitol concentration and productivity reported to date for bacteria and hemicellulosic sugars. Additionally, strain IS5-dG, which differs from IS5-dI at CRP amino acid residue 127 (I127G), was tolerant to the toxins in corncob hydrolysates. In a fed-batch fermentation experiment involving a 15-L bioreactor, IS5-dG produced 137 g/L xylitol from non-detoxified corncob hydrolysates, with a productivity of 1.76 g/L/h. On the basis of these results, we believe that IS5-dI and IS5-dG may be useful host strains for the industrial-scale production of xylitol from detoxified or non-detoxified corncob hydrolysates.

Keywords

Xylitol CCR CRP CRISPR/Cas9 Non-detoxified Hemicellulosic hydrolysate 

Notes

Funding information

This study was funded by the National Natural Science Foundation of China (21376215) and the National Key R&D Program of China (2018YFC1604102).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics statement

The research described in this article did not involve human participants or animals.

Supplementary material

253_2019_10324_MOESM1_ESM.pdf (626 kb)
ESM 1 (PDF 625 kb)

References

  1. Aiba H, Nakamura T, Mitani H, Mori H (1985) Mutations that alter the allosteric nature of cAMP receptor protein of Escherichia coli. EMBO J 4(12):3329–3332PubMedPubMedCentralCrossRefGoogle Scholar
  2. Akinterinwa O, Cirino P (2009) Heterologous expression of D-xylulokinase from Pichia stipitis, enables high levels of xylitol production by engineered Escherichia coli growing on xylose. Metab Eng 11(1):48–55PubMedCrossRefPubMedCentralGoogle Scholar
  3. Basak S, Jiang R (2012) Enhancing E. coli tolerance towards oxidative stress via engineering its global regulator cAMP receptor protein (CRP). PLoS One 7(12):e51179PubMedPubMedCentralCrossRefGoogle Scholar
  4. Basak S, Song H, Jiang R (2012) Error-prone PCR of global transcription factor cyclic AMP receptor protein for enhanced organic solvent (toluene) tolerance. Process Biochem 47(12):2152–2158CrossRefGoogle Scholar
  5. Canonaco F, Hess TA, Heri S, Wang T, Szyperski T, Sauer U (2001) Metabolic flux response to phosphoglucose isomerase knock-out in Escherichia coli and impact of overexpression of the soluble transhydrogenase udha. FEMS Microbiol Lett 204(2):247–252PubMedCrossRefPubMedCentralGoogle Scholar
  6. Carvalho W, Silva SS, Converti A, Vitolo M (2002) Metabolic behavior of immobilized Candida guilliermondii cells during batch xylitol production from sugarcane bagasse acid hydrolyzate. Biotechnol Bioeng 79(2):165–169PubMedCrossRefPubMedCentralGoogle Scholar
  7. Cases I, Velázquez F, Lorenzo V (2007) The ancestral role of the phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS) as exposed by comparative genomics. Res Microbiol 158:666–670PubMedCrossRefPubMedCentralGoogle Scholar
  8. Cheng HR, Wang B, Lv JY, Jiang MG, Lin SJ, Deng ZX (2011) Xylitol production from xylose mother liquor: a novel strategy that combines the use of recombinant Bacillus subtilis and Candida maltosa. Microb Cell Factories 10(1):5CrossRefGoogle Scholar
  9. Chin JW, Cirino PC (2011) Improved NADPH supply for xylitol production by engineered Escherichia coli with glycolytic mutations. Biotechnol Prog 27:333–341PubMedCrossRefPubMedCentralGoogle Scholar
  10. Chu SY, Tordova M, Gilliland GL, Gorshkova I, Shi Y, Wang SL, Schwarz FP (2001) The structure of the T127L/S128A mutant of cAMP receptor protein facilitates promoter site binding. J Biol Chem 276:11230–11236PubMedCrossRefGoogle Scholar
  11. Cirino PC, Chin JW, Ingram LO (2006) Engineering Escherichia coli for xylitol production from glucose-xylose mixtures. Biotechnol Bioeng 95(6):1167–1176PubMedCrossRefGoogle Scholar
  12. Dai J, Lin SH, Kemmis C, Chin AJ, LEE JC (2004) Interplay between site-specific mutations and cyclic nucleotides in modulating DNA recognition by Escherichia coli cAMP receptor protein. Biochemistry 43:8901–8910PubMedCrossRefGoogle Scholar
  13. Deutscher J, Francke C, Postma PW (2006) How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70(4):939–1031PubMedPubMedCentralCrossRefGoogle Scholar
  14. Dhar KS, Wendisch VF, Nampoothiri KM (2016) Engineering of Corynebacterium glutamicum for xylitol production from lignocellulosic pentose sugars. J Biotechnol 230:63–71PubMedCrossRefGoogle Scholar
  15. Dien BS, Nichols NN, Bothast RJ (2002) Fermentation of sugar mixtures using Escherichia coli catabolite repression mutants engineered for production of L-lactic acid. J Ind Microbiol Biotechnol 29(5):221–227PubMedCrossRefGoogle Scholar
  16. Eppler T, Boos W (1999) Glycerol-3-phosphate-mediated repression of malT in Escherichia coli does not require metabolism, depends on enzyme IIAGlc and is mediated by cAMP levels. Mol Microbiol 33(6):1221–1231PubMedCrossRefGoogle Scholar
  17. Escalante A, Cervantes AS, Gosset G, Bolívar F (2012) Current knowledge of the Escherichia coli phosphoenolpyruvate–carbohydrate phosphotransferase system: peculiarities of regulation and impact on growth and product formation. Appl Microbiol Biotechnol 94(6):1483–1494PubMedCrossRefGoogle Scholar
  18. Geng HF, Jiang RR (2015) cAMP receptor protein (CRP)-mediated resistance/tolerance in bacteria: mechanism and utilization in biotechnology. Appl Microbiol Biotechnol 99(11):4533–4543PubMedCrossRefGoogle Scholar
  19. Görke B, Stülke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6(8):613–624PubMedCrossRefGoogle Scholar
  20. Gorshkova I, Moore JL, McKenney KH, Schwarz FP (1995) Thermodynamics of cyclic nucleotide binding to the cAMP receptor protein and its T127L mutant. J Biol Chem 270:21679–21683PubMedCrossRefGoogle Scholar
  21. Gosset G (2005) Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate:sugar phosphotransferase system. Microb Cell Factories 4(1):14CrossRefGoogle Scholar
  22. Harman JG (2001) Allosteric regulation of the camp receptor protein. Biochim Biophys Acta 1547(1):1–17PubMedCrossRefGoogle Scholar
  23. Harman JG, McKenney K, Peterkofsky A (1986) Structure-function analysis of 3 cAMP-independent forms of the cAMP receptor protein. J Biol Chem 261:6332–6339Google Scholar
  24. Heinz K, Sofia, HJ, Zumft WG (2003) Phylogeny of the bacterial superfamily of crp-fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. Fems Microbiology Reviews 27(5):559–592PubMedCrossRefGoogle Scholar
  25. Hernández-Montalvo V, Valle F, Bolivar F, Gosset G (2001) Characterization of sugar mixtures utilization by an Escherichia coli mutant devoid of the phosphotransferase system. Appl Microbiol Biotechnol 57(1–2):186–191PubMedGoogle Scholar
  26. Hibi M, Yukitomo H, Ito M, Mori H (2007) Improvement of NADPH-dependent bioconversion by transcriptome-based molecular breeding. Appl Environ Microbiol 73(23):7657–7663PubMedPubMedCentralCrossRefGoogle Scholar
  27. Jarmander J, Hallstrom BM, Larsson G (2014) Simultaneous uptake of lignocellulose-based monosaccharides by Escherichia coli. Biotechnol Bioeng 111(6):1108–1115PubMedCrossRefGoogle Scholar
  28. Jiang Y, Chen B, Duan C, Sun BB, Yang JJ, Yang S (2015) Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol 81:2506–2514PubMedPubMedCentralCrossRefGoogle Scholar
  29. Jin LQ, Yang B, Xu W, Chen XX, Jia DX, Liu ZQ, Zheng YG (2019) Immobilization of recombinant Escherichia coli whole cells harboring xylose reductase and glucose dehydrogenase for xylitol production from xylose mother liquor. Bioresour Technol 285:121344PubMedCrossRefGoogle Scholar
  30. Jo JH, Oh SY, Lee HS, Park YC, Seo JH (2015) Dual utilization of NADPH and NADH cofactors enhances xylitol production in engineered Saccharomyces cerevisiae. Biotechnol J 10:1935–1943PubMedCrossRefPubMedCentralGoogle Scholar
  31. Khankal R, Chin JW, Ghosh D, Cirino PC (2009) Transcriptional effects of CRP* expression Escherichia coli. J Biol Eng 3(1):13PubMedPubMedCentralCrossRefGoogle Scholar
  32. Kim SH, Yun JY, Kim SG, Seo JH, Park JB (2010) Production of xylitol from D-xylose and glucose with recombinant Corynebacterium glutamicum. Enzym Microb Technol 46(5):366–371CrossRefGoogle Scholar
  33. Kim SM, Choi BY, Ryu YS, Jung SH, Park JM, Kim GH, Lee SK (2015) Simultaneous utilization of glucose and xylose via novel mechanisms in engineered Escherichia coli. Metab Eng 30:141–148PubMedCrossRefPubMedCentralGoogle Scholar
  34. Lee EL, Glasgow J, Leu SF, Belduz AO, Harman JG (1994) Mutagenesis of the cyclic AMP receptor protein of Escherichia coli: targeting positions 83,127 and 128 the cyclic nucleotide binding pocket. Nucleic Acids Res 22(15):2894–2901PubMedPubMedCentralCrossRefGoogle Scholar
  35. Leu S-F, Baker CH, Lee EJ, Harman JG (1999) Position 127 amino acid substitutions affect the formation of CRP:cAMP:lacP complexes but not CRP:cAMP:RNA polymerase complexes at lacP. Biochemistry 38(19):6222–6230PubMedCrossRefPubMedCentralGoogle Scholar
  36. Li R, Chen Q, Wang PG, Qi QS (2007) A novel-designed escherichia coli for the production of various polyhydroxyalkanoates from inexpensive substrate mixture. Appl Microbiol Biotechnol 75(5):1103–1109PubMedCrossRefPubMedCentralGoogle Scholar
  37. López-Linares JC, Romero I, Cara C, Castro E, Mussatto SI (2018) Xylitol production by Debaryomyces hansenii and Candida guilliermondii from rapeseed straw hemicellulosic hydrolysate. Bioresour Technol 247:736–743PubMedCrossRefPubMedCentralGoogle Scholar
  38. Melaja AJ, Hamalainen L (1977) Process for making xylitol. US Patent 4, 008, 285Google Scholar
  39. Nair NU, Zhao H (2010) Selective reduction of xylose to xylitol from a mixture of hemicellulosic sugars. Metab Eng 12(5):462–468PubMedCrossRefPubMedCentralGoogle Scholar
  40. Nichols N, Dien B, Bothast R (2001) Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol. Appl Microbiol Biotechnol 56(1–2):120–125PubMedCrossRefGoogle Scholar
  41. Oh YJ, Lee TH, Lee SH, Oh EJ, Ryu YW, Kim MD, Seo JH (2007) Dual modulation of glucose 6-phosphate metabolism to increase NADPH-dependent xylitol production in recombinant Saccharomyces cerevisiae. J Mol Catal B Enzym 47(1–2):37–42CrossRefGoogle Scholar
  42. Ping Y, Lin HZ, Song G, Ge JP (2013) Xylitol production from non-detoxified corncob hemicellulose acid hydrolysate by Candida tropicalis. Biochem Eng J 75:86–91CrossRefGoogle Scholar
  43. Pontrelli S, Chiu TY, Lan EI, Chen FYH, Chang P, Liao JC (2018) Escherichia coli as a host for metabolic engineering. Metab Eng 50:16–46PubMedCrossRefGoogle Scholar
  44. Popovych N, Tzeng SR, Tonelli M, Ebright RH, Kalodimos CG (2009) Structural basis for cAMP-mediated allosteric control of the catabolite activator protein. Proc Natl Acad Sci U S A 106(17):6927–6932PubMedPubMedCentralCrossRefGoogle Scholar
  45. Rao LV, Goli JK, Gentela J, Koti S (2016) Bioconversion of lignocellulosic biomass to xylitol: an overview. Bioresour Technol 213:299–310CrossRefGoogle Scholar
  46. Sasaki M, Jojima T, Inui M, Yukawa H (2010) Xylitol production by recombinant corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 86(4):1057–1066PubMedCrossRefGoogle Scholar
  47. Snoep JL, Arfman N, Yomano LP, Fliege RK, Conway T, Ingram LO (1994) Reconstruction of glucose uptake and phosphorylation in a glucose negative mutant of Escherichia coli by using Zymomonas mobilis genes encoding the glucose facilitator protein and glucokinase. J Bacteriol 176(7):2133–2135PubMedPubMedCentralCrossRefGoogle Scholar
  48. Song S, Park C (1997) Organization and regulation of the D-xylose operons in Escherichia coli K-12: XylR acts as a transcriptional activator. J Bacteriol 179(22):7025–7032PubMedPubMedCentralCrossRefGoogle Scholar
  49. Su BL, Wu MB, Zhang Z, Lin JP, Yang LR (2015) Efficient production of xylitol from hemicellulosic hydrolysate using engineered Escherichia coli. Metab Eng 31:112–122PubMedCrossRefPubMedCentralGoogle Scholar
  50. Su BL, Zhang Z, Wu MB, Lin JP, Yang LR (2016) Construction of plasmid-free Escherichia coli for the production of arabitol-free xylitol from corncob hemicellulosic hydrolysate. Sci Rep 6:26567PubMedPubMedCentralCrossRefGoogle Scholar
  51. Walther T, Hensirisak P, Agblevor FA (2001) The influence of aeration and hemicellulosic sugars on xylitol production by Candida tropicalis. Bioresour Technol 76(3):213–220PubMedCrossRefGoogle Scholar
  52. Wang W, Ling HZ, Zhao H (2015) Steam explosion pretreatment of corn straw on xylose recovery and xylitol production using hydrolysate without detoxification. Process Biochem 50:1623–1628CrossRefGoogle Scholar
  53. Wang HW, Li LJ, Zhang LB, An J, Cheng HR, Deng ZX (2016) Xylitol production from waste xylose mother liquor containing miscellaneous sugars and inhibitors: one-pot biotransformation by candida tropicalis and recombinant Bacillus subtilis. Microb Cell Factories 15(1):82CrossRefGoogle Scholar
  54. Werpy T, Petersen G, Aden A, Bozell J, Holladay J, White J, Manheim A, Elliot D, Lasure L, Jones S, Gerber M, Ibsen K, Lumberg L, Kelley S (2004) Top value added chemicals from biomass, vol. 1: results of screening for potential candidates from sugars and synthesis gas Pacific Northwest National Laboratory, National Renewable Energy Laboratory and Department of Energy, Washington, DC 76 ppGoogle Scholar
  55. Wu YF, Shen XL, Yuan QP, Yan YJ (2016) Metabolic engineering strategies for co-utilization of carbon sources in microbes. Bioengineering 3(1):10PubMedCentralCrossRefPubMedGoogle Scholar
  56. Xia T, Eiteman MA, Altman E (2012) Simultaneous utilization of glucose, xylose and arabinose in the presence of acetate by a consortium of Escherichia coli strains. Microb Cell Factories 11(1):77CrossRefGoogle Scholar
  57. Xu YR, Chi P, Muhammad B, Cheng HR (2019) Biosynthetic strategies to produce xylitol: an economical venture. Appl Microbiol Biotechnol 103(13):5143–5160PubMedCrossRefGoogle Scholar
  58. Yao R, Hirose Y, Sarkar D, Nakahigashi K, Ye Q, Shimizu K (2011) Catabolic regulation analysis of Escherichia coli and its crp, mlc, mgsA, pgi and ptsG mutants. Microb Cell Factories 10(1):67CrossRefGoogle Scholar
  59. Yuan XS, Wang JP, Lin JP, Yang LR, Wu MB (2019) Efficient production of xylitol by the integration of multiple copies of xylose reductase gene and the deletion of Embden–Meyerhof–Parnas pathway-associated genes to enhance NADPH regeneration in Escherichia coli. J Ind Microbiol Biotechnol 46(8):1061–1069CrossRefGoogle Scholar
  60. Zhang HF, Chong HQ, Ching BC, Song H, Jiang RR (2012) Engineering global transcription factor cyclic AMP receptor protein of Escherichia coli for improved L-butanol tolerance. Appl Microbiol Biotechnol 94(4):1107–1117PubMedCrossRefGoogle Scholar
  61. Zhang J, Zhang B, Wang D, Gao X, Hong J (2015) Improving xylitol production at elevated temperature with engineered Kluyveromyces marxianus through over-expressing transporters. Bioresour Technol 175:642–645PubMedCrossRefGoogle Scholar
  62. Zhang M, Puri AK, Wang ZX, Singh S, Permaul K (2019) A unique xylose reductase from Thermomyces lanuginosus: effect of lignocellulosic substrates and inhibitors and applicability in lignocellulosic bioconversion. Bioresour Technol 281:374–381PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Xinsong Yuan
    • 1
  • Shuai Tu
    • 2
  • Jianping Lin
    • 1
  • Lirong Yang
    • 1
  • Huahao Shen
    • 3
  • Mianbin Wu
    • 1
    Email author
  1. 1.Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological EngineeringZhejiang UniversityHangzhouPeople’s Republic of China
  2. 2.School of Chemistry and Chemical EngineeringHefei Normal UniversityHefeiPeople’s Republic of China
  3. 3.Department of Respiratory and Critical Care Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouPeople’s Republic of China

Personalised recommendations