Advertisement

Applied Microbiology and Biotechnology

, Volume 104, Issue 3, pp 1135–1148 | Cite as

Characterization of three GH35 β-galactosidases, enzymes able to shave galactosyl residues linked to rhamnogalacturonan in pectin, from Penicillium chrysogenum 31B

  • Tatsuya Kondo
  • Yuichi Nishimura
  • Kaori Matsuyama
  • Megumi Ishimaru
  • Masami Nakazawa
  • Mitsuhiro Ueda
  • Tatsuji SakamotoEmail author
Biotechnologically relevant enzymes and proteins
  • 116 Downloads

Abstract

Three recombinant β-galactosidases (BGALs; PcBGAL35A, PcBGAL35B, and PcGALX35C) belonging to the glycoside hydrolase (GH) family 35 derived from Penicillium chrysogenum 31B were expressed using Pichia pastoris and characterized. PcBGAL35A showed a unique substrate specificity that has not been reported so far. Based on the results of enzymological tests and 1H-nuclear magnetic resonance, PcBGAL35A was found to hydrolyze β-1,4-galactosyl residues linked to l-rhamnose in rhamnogalacturonan-I (RG-I) of pectin, as well as p-nitrophenyl-β-d-galactopyranoside and β-d-galactosyl oligosaccharides. PcBGAL35B was determined to be a common BGAL through molecular phylogenetic tree and substrate specificity analysis. PcGALX35C was found to have similar catalytic capacities for the β-1,4-galactosyl oligomer and polymer. Furthermore, PcGALX35C hydrolyzed RG-I-linked β-1,4-galactosyl oligosaccharide side chains with a degree of polymerization of 2 or higher in pectin. The amino acid sequence similarity of PcBGAL35A was approximately 30% with most GH35 BGALs, whose enzymatic properties have been characterized. The amino acid sequence of PcBGAL35B was approximately 80% identical to those of BGALs from Penicillium sp. The amino acid sequence of PcGALX35C was classified into the same phylogenetic group as PcBGAL35A. Pfam analysis revealed that the three BGALs had five domains including a catalytic domain. Our findings suggest that PcBGAL35A and PcGALX35C are enzymes involved in the degradation of galactosylated RG-I in pectin. The enzymes characterized in this study may be applied for products that require pectin processing and for the structural analysis of pectin.

Keywords

Glycoside hydrolase family 35 β-Galactosidase Arabinogalactan Rhamnogalacturonan-I Pectin Penicillium chrysogenum 

Notes

Acknowledgments

The authors thank Prof. Toshihisa Kotake, Saitama University, for kindly providing glucuronosyl β-1,6-GalOligos and endo-β-1,3-galactanase. We would like to thank Editage (http://www.editage.jp) for English language editing.

Funding information

This work was funded by Japan Society for the Promotion of Science KAKENHI (grant number 25450135). The funder had no role in study design, in the collection, analysis and interpretation of data, in the writing of the report, and in the decision to submit the article for publication.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Buckeridge MS, Reid JSG (1994) Purification and properties of a novel β-galactosidase or exo-(1→4)-β-d-galactanase from the cotyledons of germinated Lupinus angustifolius L. seeds. Planta 192:502–511.  https://doi.org/10.1007/BF00203588 CrossRefPubMedGoogle Scholar
  2. Budriene S, Gorochovceva N, Romaskevic T, Yugova LV, Miezeliene A, Dienys G, Zubriene A (2005) β-Galactosidase from Penicillium canescens. Properties and immobilization. Open Chem 3:95–105.  https://doi.org/10.2478/BF02476241 CrossRefGoogle Scholar
  3. Cheng W, Wang L, Jiang YL, Bai XH, Chu J, Li Q, Yu G, Liang QL, Zhou CZ, Chen Y (2012) Structural insights into the substrate specificity of Streptococcus pneumoniae β(1,3)-galactosidase BgaC. J Biol Chem 287:22910–22918.  https://doi.org/10.1074/jbc.M112.367128 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861.  https://doi.org/10.1038/nrm1746 CrossRefPubMedGoogle Scholar
  5. Eda M, Matsumoto T, Sakamoto T, Ishimaru M, Tada T (2016) Structural and functional analysis of tomato β-galactosidase 4: insight into the substrate specificity of the fruit softening-related enzyme. Plant J 86:300–307.  https://doi.org/10.1111/tpj.13160 CrossRefPubMedGoogle Scholar
  6. Frankova J, Fry SC (2013) Biochemistry and physiological roles of enzymes that ‘cut and paste’ plant cell-wall polysaccharides. J Exp Bot 64:3519–3550.  https://doi.org/10.1093/jxb/ert201 CrossRefPubMedGoogle Scholar
  7. Fry SC, York WS, Albersheim P, Darvill A, Hayashi T, Joseleau JP, Kato Y, Lorences ES, Maclachlan GA, McNeil M, Mort AJ, Reid JSG, Seitz HU, Selvendran RR, Voragen AGJ, White AR (1993) An unambiguous nomenclature for xyloglucan-derived oligosaccharides. Physiol Plant 89:1–3.  https://doi.org/10.1111/j.1399-3054.1993.tb01778.x CrossRefGoogle Scholar
  8. Gantulga D, Turan Y, Bevan DR, Esen A (2008) The Arabidopsis At1g45130 and At3g52840 genes encode β-galactosidases with activity toward cell wall polysaccharides. Phytochemistry 69:1661–1670.  https://doi.org/10.1016/j.phytochem.2008.01.023 CrossRefPubMedGoogle Scholar
  9. Harholt J, Suttangkakul A, Scheller HV (2010) Biosynthesis of pectin. Plant Physiol 153:384–395.  https://doi.org/10.1104/pp.110.156588 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Ignatova T, Iliev I, Kirilov N, Vassileva T, Dalgalarrondo M, Haertlé T, Chobert JM, Ivanova I (2009) Effect of oligosaccharides on the growth of Lactobacillus delbrueckii subsp. bulgaricus strains isolated from dairy products. J Agric Food Chem 57:9496–9502.  https://doi.org/10.1021/jf901684z CrossRefPubMedGoogle Scholar
  11. Ishimaru M, Smith DL, Mort AJ, Gross KC (2009) Enzymatic activity and substrate specificity of recombinant tomato β-galactosidases 4 and 5. Planta 229:447–456.  https://doi.org/10.1007/s00425-008-0842-x CrossRefPubMedGoogle Scholar
  12. Iwai M, Kawakami T, Ikemoto T, Fujiwara D, Takenaka S, Nakazawa M, Ueda M, Sakamoto T (2015a) Molecular characterization of a Penicillium chrysogenum exo-rhamnogalacturonan lyase that is structurally distinct from other polysaccharide lyase family proteins. Appl Microbiol Biotechnol 99:8515–8525.  https://doi.org/10.1007/s00253-015-6600-7 CrossRefPubMedGoogle Scholar
  13. Iwai M, Yamada H, Ikemoto T, Matsumoto S, Fujiwara D, Takenaka S, Sakamoto T (2015b) Biochemical characterization and overexpression of an endo-rhamnogalacturonan lyase from Penicillium chrysogenum. Mol Biotechnol 57:539–548.  https://doi.org/10.1007/s12033-015-9847-4 CrossRefPubMedGoogle Scholar
  14. Konishi T, Kotake T, Soraya D, Matsuoka K, Koyama T, Kaneko S, Igarashi K, Samejima M, Tsumuraya Y (2008) Properties of family 79 β-glucuronidases that hydrolyze β-glucuronosyl and 4-O-methyl-β-glucuronosyl residues of arabinogalactan-protein. Carbohydr Res 343:1191–1201.  https://doi.org/10.1016/j.carres.2008.03.004 CrossRefPubMedGoogle Scholar
  15. Kotake T, Kaneko S, Kubomoto A, Haque MA, Kobayashi H, Tsumuraya Y (2004) Molecular cloning and expression in Escherichia coli of a Trichoderma viride endo-β-(1→6)-galactanase gene. Biochem J 377:749–755.  https://doi.org/10.1042/BJ20031145 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kotake T, Dina S, Konishi T, Kaneko S, Igarashi K, Samejima M, Watanabe Y, Kimura K, Tsumuraya Y (2005) Molecular cloning of a β-galactosidase from radish that specifically hydrolyzes β-(1→3)-and β-(1→6)-galactosyl residues of arabinogalactan-protein. Plant Physiol 138:1563–1576.  https://doi.org/10.1104/pp.105.062562 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kotake T, Hirata N, Degi Y, Ishiguro M, Kitazawa K, Takata R, Ichinose H, Kaneko S, Igarashi K, Samejima M, Tsumuraya Y (2011) Endo-β-1,3-galactanase from winter mushroom Flammulina velutipes. J Biol Chem 286:27848–27854.  https://doi.org/10.1074/jbc.M111.251736 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kunishige Y, Iwai M, Nakazawa M, Ueda M, Tada T, Nishimura S, Sakamoto T (2018) Crystal structure of exo-rhamnogalacturonan lyase from Penicillium chrysogenum as a member of polysaccharide lyase family 26. FEBS Lett 592:1378–1388.  https://doi.org/10.1002/1873-3468.13034 CrossRefPubMedGoogle Scholar
  19. Lahaye M, Vigouroux J, Thibault JF (1991) Endo-β-1,4-d-galactanase from Aspergillus niger var. aculeatus: purification and some properties. Carbohydr Polym 15:431–444.  https://doi.org/10.1016/0144-8617(91)90092-Q CrossRefGoogle Scholar
  20. Letunic I, Bork P (2011) Interactive tree of life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res 39:475–478.  https://doi.org/10.1093/nar/gkr201 CrossRefGoogle Scholar
  21. Luis AS, Briggs J, Zhang X, Farnell B, Ndeh D, Labourel A, Baslé A, Cartmell A, Terrapon N, Stott K, Lowe EC, McLean R, Shearer K, Schückel J, Venditto I, Ralet MC, Henrissat B, Martens EC, Mosimann SC, Abbott DW, Gilbert HJ (2018) Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides. Nat Microbiol 3:210–219.  https://doi.org/10.1038/s41564-017-0079-1 CrossRefPubMedGoogle Scholar
  22. Maksimainen MM, Lampiob A, Mertanena M, Turunenb O, Rouvinen J (2013) The crystal structure of acidic β-galactosidase from Aspergillus oryzae. Int J Bio Macromol 60:109–115.  https://doi.org/10.1016/j.ijbiomac.2013.05.003 CrossRefGoogle Scholar
  23. Matsumoto S, Yamada H, Kunishige Y, Takenaka S, Nakazawa M, Ueda M, Sakamoto T (2017) Identification of a novel Penicillium chrysogenum rhamnogalacturonan rhamnohydrolase and the first report of a rhamnogalacturonan rhamnohydrolase gene. Enzyme Microb Technol 98:76–85.  https://doi.org/10.1016/j.enzmictec.2016.12.008 CrossRefPubMedGoogle Scholar
  24. Mervat I, Lopez-Leiva FM (2000) Continuous production of oligosaccharides from whey using a membrane reactor. Proc Biochem 35:581–587.  https://doi.org/10.1016/S0032-9592(99)00108-9 CrossRefGoogle Scholar
  25. Nakamura A, Furuta H, Maeda H, Takao T, Nagamatsu Y (2002) Structural studies by stepwise enzymatic degradation of the main backbone of soybean soluble polysaccharides consisting of galacturonan and rhamnogalacturonan. Biosci Biotechnol Biochem 66:1301–1313.  https://doi.org/10.1271/bbb.66.1301 CrossRefPubMedGoogle Scholar
  26. Nakano H, Takenishi S, Kitahata S, Kinugasa H, Watanabe Y (1990) Purification and characterization of an exo-1,4-β-galactanase from a strain of Bacillus subtilis. Eur J Biochem 193:61–67.  https://doi.org/10.1111/j.1432-1033.1990.tb19304.x CrossRefPubMedGoogle Scholar
  27. Neustroev KN, de Sousa EA, Golubev AM, Brandao Neto JR, Eneyskaya EV, Kulminskaya AA, Plikarpov I (2000) Purification, crystallization and preliminary diffraction study of β-galactosidase from Penicillium sp. Acta Crystallogr D 56:1508–1509.  https://doi.org/10.1107/S0907444900011756 CrossRefPubMedGoogle Scholar
  28. Ostergaard S, Walløe KO, Gomes CSG, Olsson L, Nielsen J (2001) The impact of GAL6, GAL80, and MIG1 on glucose control of the GAL system in Saccharomyces cerevisiae. FEMS Yeast Res 1:47–55.  https://doi.org/10.1111/j.1567-1364.2001.tb00012.x CrossRefPubMedGoogle Scholar
  29. Ovodov YS (2009) Current views on pectin substances. Russ J Bioorganic Chem 35:269–284.  https://doi.org/10.1134/S1068162009030017 CrossRefGoogle Scholar
  30. Phuengmaung P, Sunagawa Y, Makino Y, Kusumoto T, Handa S, Sukhumsiricharta W, Sakamoto T (2019) Identification and characterization of ferulic acid esterase from Penicillium chrysogenum 31B: de-esterification of ferulic acid decorated with l-arabinofuranoses and d-galactopyranoses in sugar beet pectin. Enzym Microb Technol 131:109380.  https://doi.org/10.1016/j.enzmictec.2019.109380 CrossRefGoogle Scholar
  31. Rico-Diaz A, Ramirez-Escudero M, Vizoso-Vazquez A, Cerdan ME, Becerra M, Sanz-Aparicio J (2017) Structural features of Aspergillus niger β-galactosidase define its activity against glycoside linkages. FEBS 284:1815–1829.  https://doi.org/10.1111/febs.14083 CrossRefGoogle Scholar
  32. Rojas AL, Nagem RAP, Neustroev KN, Arand M, Adamska M, Eneyskaya EV, Kulminskaya AA, Garratt RC, Golubev AM, Polikarpov I (2004) Crystal structures of β-galactosidase from Penicillium sp. and its complex with galactose. J Mol Biol 343:1281–1292.  https://doi.org/10.1016/j.jmb.2004.09.012 CrossRefPubMedGoogle Scholar
  33. Sakamoto T, Ishimaru M (2013) Peculiarities and applications of galactanolytic enzymes that act on type I and II arabinogalactans. Appl Microbiol Biotechnol 97:5201–5213.  https://doi.org/10.1007/s00253-013-4946-2 CrossRefPubMedGoogle Scholar
  34. Sakamoto T, Thibault JF (2001) Exo-arabinanase of Penicillium chrysogenum able to release arabinobiose from α-1,5-l-arabinan. Appl Environ Microbiol 67:3319–3321.  https://doi.org/10.1128/AEM.67.7.3319-3321.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Sakamoto T, Ihara H, Kozaki S, Kawasaki H (2003) A cold-adapted endo-arabinanase from Penicillium chrysogenum. Biochim Biophys Acta 1624:70–75.  https://doi.org/10.1016/j.bbagen.2003.09.011 CrossRefPubMedGoogle Scholar
  36. Sakamoto T, Ihara H, Shibano A, Kasai N, Inui H, Kawasaki H (2004) Molecular characterization of a Penicillium chrysogenum exo-1,5-α-l-arabinanase that is structurally distinct from other arabinan-degrading enzymes. FEBS Lett 560:199–204.  https://doi.org/10.1016/S0014-5793(04)00106-1 CrossRefPubMedGoogle Scholar
  37. Sakamoto T, Taniguchi Y, Suzuki S, Ihara H, Kawasaki H (2007) Characterization of Fusarium oxysporum β-1,6-galactanase, an enzyme that hydrolyzes larch wood arabinogalactan. Appl Environ Microbiol 73:3109–3112.  https://doi.org/10.1128/AEM.02101-06 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Sakamoto T, Tanaka H, Nishimura Y, Ishimaru M, Kasai N (2011) Characterization of an exo-β-1,3-d-galactanase from Sphingomonas sp. 24 T and its application to structural analysis of larch wood arabinogalactan. Appl Microbiol Biotechnol 90:1701–1710.  https://doi.org/10.1007/s00253-011-3219-1 CrossRefPubMedGoogle Scholar
  39. Sakamoto T, Inui M, Yasui K, Hosokawa S, Ihara H (2012a) Substrate specificity and gene expression of two Penicillium chrysogenum α-l-arabinofuranosidases (AFQ1 and AFS1) belonging to glycoside hydrolase families 51 and 54. Appl Microbiol Biotechnol 97:1121–1130.  https://doi.org/10.1007/s00253-012-3978-3 CrossRefPubMedGoogle Scholar
  40. Sakamoto T, Inui M, Yasui K, Tokuda S, Akiyoshi M, Kobori Y, Nakaniwa T, Tada T (2012b) Biochemical characterization and gene expression of two endo-arabinanases from Penicillium chrysogenum 31B. Appl Microbiol Biotechnol 93:1087–1096.  https://doi.org/10.1007/s00253-011-3452-7 CrossRefPubMedGoogle Scholar
  41. Sakamoto T, Nishimura Y, Makino Y, Sunagawa Y, Harada N (2013) Biochemical characterization of a GH53 endo-β-1,4-galactanase and a GH35 exo-β-1,4-galactanase from Penicillium chrysogenum. Appl Microbiol Biotechnol 97:2895–2906.  https://doi.org/10.1007/s00253-012-4154-5 CrossRefPubMedGoogle Scholar
  42. Shi H, Yu L, Shi Y, Lu J, Teng H, Zhou Y, Sun L (2017) Structural characterization of a rhamnogalacturonan I domain from ginseng and its inhibitory effect on Galectin-3. Molecules 22:1016.  https://doi.org/10.3390/molecules22061016 CrossRefPubMedCentralGoogle Scholar
  43. Shinozaki A, Kawakami T, Hosokawa S, Sakamoto T (2014) A novel GH43 α-l-arabinofuranosidase of Penicillium chrysogenum that preferentially degrades single-substituted arabinosyl side chains in arabinan. Enzyme Microb Technol 58-59:80–86.  https://doi.org/10.1016/j.enzmictec.2014.03.005 CrossRefPubMedGoogle Scholar
  44. Shinozaki A, Hosokawa S, Nakazawa M, Ueda M, Sakamoto T (2015) Identification and characterization of three Penicillium chrysogenum α-l-arabinofuranosidases (PcABF43B, PcABF51C, and AFQ1) with different specificities toward arabino-oligosaccharides. Enzyme Microb Technol 73−74:65–71.  https://doi.org/10.1016/j.enzmictec.2015.04.003 CrossRefPubMedGoogle Scholar
  45. Sieber R, Stransky M, de Vrese M (1997) Lactose intolerance and consumption of milk and milk products. Z Ernährungswiss 36:375–393.  https://doi.org/10.1007/BF01617834 CrossRefPubMedGoogle Scholar
  46. Tsumuraya Y, Mochizuki N, Hashimoto Y, Kovác P (1990) Purification of an exo-β-(1→3)-d-galactanase of Irpex lacteus (Polyporus tulipiferae) and its action on arabinogalactan-proteins. J Biol Chem 265:7207–7215.  https://doi.org/10.1042/bj2130437 CrossRefPubMedGoogle Scholar
  47. Van den Berg MA, Albang R, Albermann K, Badger JH, Daran JM, Driessen AJ, Garcia-Estrada C, Fedorova ND, Harris DM, Heijne WH, Joardar V, Kiel JA, Kovalchuk A, Martín JF, Nierman WC, Nijland JG, Pronk JT, Roubos JA, van der Klei IJ, van Peij NN, Veenhuis M, von Döhren H, Wagner C, Wortman J, Bovenberg RA (2008) Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat Biotechnol 26:1161–1168.  https://doi.org/10.1038/nbt.1498 CrossRefPubMedGoogle Scholar
  48. Voragen AGJ, Coenen GJ, Verhoef RP, Schols HA (2009) Pectin, a versatile polysaccharide present in plant cell walls. Struct Chem 20:263–275.  https://doi.org/10.1007/s11224-009-9442-z CrossRefGoogle Scholar
  49. Wang H, Luo H, Bai Y, Wang Y, Yang P, Shi P, Zhang W, Fan Y, Yao B (2009) An acidophilic β-galactosidase from Bispora sp. MEY-1 with high lactose hydrolytic activity under simulated gastric conditions. J Agric Food Chem 57:5535–5541.  https://doi.org/10.1021/jf900369e CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Tatsuya Kondo
    • 1
  • Yuichi Nishimura
    • 1
  • Kaori Matsuyama
    • 2
  • Megumi Ishimaru
    • 3
  • Masami Nakazawa
    • 1
  • Mitsuhiro Ueda
    • 1
  • Tatsuji Sakamoto
    • 1
    Email author
  1. 1.Division of Applied Life Sciences, Graduate School of Life and Environmental SciencesOsaka Prefecture UniversityOsakaJapan
  2. 2.Department of Biomaterials Sciences, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
  3. 3.Faculty of Biology-Oriented Science and TechnologyKindai UniversityWakayamaJapan

Personalised recommendations