A putative mechanism underlying secondary metabolite overproduction by Streptomyces strains with a 23S rRNA mutation conferring erythromycin resistance

  • Kanata Hoshino
  • Yu Imai
  • Keiichiro Mukai
  • Ryoko Hamauzu
  • Kozo Ochi
  • Takeshi HosakaEmail author
Applied microbial and cell physiology


Mutations in rrn encoding ribosomal RNA (rRNA) and rRNA modification often confer resistance to ribosome-targeting antibiotics by altering the site of their interaction with the small (30S) and large (50S) subunits of the bacterial ribosome. The highly conserved central loop of domain V of 23S rRNA (nucleotides 2042–2628 in Escherichia coli; the exact position varies by species) of the 50S subunit, which is implicated in peptidyl transferase activity, is known to be important in macrolide interactions and resistance. In this study, we identified an A2302T mutation in the rrnA-23S rRNA gene and an A2281G mutation in the rrnC-23S rRNA gene that were responsible for resistance to erythromycin in the model actinomycete Streptomyces coelicolor A3(2) and its close relative Streptomyces lividans 66, respectively. Interestingly, genetic and phenotypic characterization of the erythromycin-resistant mutants indicated a possibility that under coexistence of the 23S rRNA mutation and mutations in other genes, S. coelicolor A3(2) and S. lividans 66 can produce abundant amounts of the pigmented antibiotics actinorhodin and undecylprodigiosin depending on the combinations of mutations. Herein, we report the unique phenomenon occurring by unexpected characteristics of the 23S rRNA mutations that can affect the emergence of additional mutations probably with an upswing in spontaneous mutations and enrichment in their variations in Streptomyces strains. Further, we discuss a putative mechanism underlying secondary metabolite overproduction by Streptomyces strains with a 23S rRNA mutation conferring erythromycin resistance.


Streptomyces 23S rRNA mutations Erythromycin resistance Secondary metabolism 


Funding information

This work was financially supported by a Grant-in-Aid for Young Scientists (A) from the Japan Society for the Promotion of Science (Grant No. 25712008) and by the Hokuto Bio-science Promotion Foundation (Japan) to T. H.

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

253_2019_10288_MOESM1_ESM.pdf (1.2 mb)
ESM 1 (PDF 1179 kb)


  1. Baltz RH (2014) Spontaneous and induced mutations to rifampicin, streptomycin and spectinomycin resistances in actinomycetes: mutagenic mechanisms and applications for strain improvement. J Antibiot 67:619–624PubMedCrossRefPubMedCentralGoogle Scholar
  2. Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289:905–920PubMedCrossRefPubMedCentralGoogle Scholar
  3. Barnard AM, Simpson NJ, Lilley KS, Salmond GP (2010) Mutation in rpsL that confer streptomycin resistance show pleiotropic effects on virulence and the production of a carbapenem antibiotic in Erwinia carotovora. Microbiology 156:1030–1039PubMedCrossRefPubMedCentralGoogle Scholar
  4. Bentley S, Chater K, Cerdeño-Tárraga AM, Challis G, Thomson N, James K, Harris D, Quail M, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen C, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell B, Parkhill J, Hopwood D (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bierman M, Logan R, O’Brien K, Seno ET, Rao RN, Schoner BE (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49PubMedCrossRefPubMedCentralGoogle Scholar
  6. Crowe-McAuliffe C, Graf M, Huter P, Takada H, Abdelshahid M, Nováček J, Murina V, Atkinson GC, Hauryliuk V, Wilson DN (2018) Structural basis for antibiotic resistance mediated by the Bacillus subtilis ABCF ATPase VmlR. Proc Natl Acad Sci U S A 115:8978–8983PubMedPubMedCentralCrossRefGoogle Scholar
  7. Davis JR, Sello JK (2010) Regulation of genes in Streptomyces bacteria required for catabolism of lignin-derived aromatic compounds. Appl Microbiol Biotechnol 86:921–929PubMedCrossRefPubMedCentralGoogle Scholar
  8. Davis JH, Williamson JR (2017) Structure and dynamics of bacterial ribosome biogenesis. Philos Trans R Soc B 372:20160181CrossRefGoogle Scholar
  9. Davis JH, Tan YZ, Carragher B, Potter CS, Lyumkis D, Williamson JR (2016) Modular assembly of the bacterial large ribosomal subunit. Cell 167:1610–1622PubMedPubMedCentralCrossRefGoogle Scholar
  10. Dinos GP (2017) The macrolide antibiotic renaissance. Br J Pharmacol 174:2967–2983PubMedPubMedCentralCrossRefGoogle Scholar
  11. Dohra H, Miyake Y, Kodani S (2017) Draft genome sequence of Streptomyces olivochromogenes NBRC 3561, a bioactive peptide-producing Actinobacterium. Genome Announc 5:e01048–e01017PubMedPubMedCentralCrossRefGoogle Scholar
  12. Fyfe C, Grossman TH, Kerstein K, Sutcliffe J (2016) Resistance to macrolide antibiotics in public health pathogens. Cold Spring Harb Perspect Med 6:a025395PubMedPubMedCentralCrossRefGoogle Scholar
  13. Gosse JT, Ghosh S, Sproule A, Overy D, Cheeptham N, Boddy CN (2019) Whole genome sequencing and metabolomic study of cave Streptomyces isolates ICC1 and ICC4. Front Microbiol 10:1020PubMedPubMedCentralCrossRefGoogle Scholar
  14. Hojati Z, Milne C, Harvey B, Gordon L, Borg M, Flett F, Wilkinson B, Sidebottom PJ, Rudd BAM, Hayes MA, Smith CP, Micklefield J (2002) Structure, biosynthetic origin, and engineered biosynthesis of calcium-dependent antibiotics from Streptomyces coelicolor. Chem Biol 9:1175–1187PubMedCrossRefPubMedCentralGoogle Scholar
  15. Hosaka T, Xu J, Ochi K (2006) Increased expression of ribosome recycling factor is responsible for the enhanced protein synthesis during the late growth phase in an antibiotic-overproducing Streptomyces coelicolor ribosomal rpsL mutant. Mol Microbiol 61:883–897PubMedCrossRefPubMedCentralGoogle Scholar
  16. Hosaka T, Ohnishi-Kameyama M, Muramatsu H, Murakami K, Tsurumi Y, Kodani S, Yoshida M, Fujie A, Ochi K (2009) Antibacterial discovery in actinomycetes strains with mutations in RNA polymerase or ribosomal protein S12. Nat Biotechnol 27:462–464PubMedCrossRefPubMedCentralGoogle Scholar
  17. Hu H, Zhang Q, Ochi K (2002) Activation of antibiotic biosynthesis by specified mutations in the rpoB gene (encoding the RNA polymerase beta subunit) of Streptomyces lividans. J Bacteriol 184:3984–3991PubMedPubMedCentralCrossRefGoogle Scholar
  18. Hutchings MI, Hoskisson PA, Chandra G, Buttner J (2004) Sensing and responding to diverse extracellular signals? Analysis of the sensor kinases and response regulators of Streptomyces coelicolor A3(2). Microbiology 150:2795–2806PubMedCrossRefPubMedCentralGoogle Scholar
  19. Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Omura S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531PubMedCrossRefPubMedCentralGoogle Scholar
  20. Imai Y, Fujiwara T, Ochi K, Hosaka T (2012) Development of the ability to produce secondary metabolites in Streptomyces through the acquisition of erythromycin resistance. J Antibiot 65:323–326PubMedCrossRefPubMedCentralGoogle Scholar
  21. Ishizuka M, Imai Y, Mukai K, Shimono K, Hamauzu R, Ochi K, Hosaka T (2018) A possible mechanism for lincomycin induction of secondary metabolism in Streptomyces coelicolor A3 (2). Antonie Van Leeuwenhoek 111:705–716PubMedCrossRefPubMedCentralGoogle Scholar
  22. Jelic D, Antolivic R (2016) From erythromycin to azithromycin and new potential ribosome-binding antimicrobials. Antibiotics 5:29PubMedCentralCrossRefGoogle Scholar
  23. Kaweewan I, Komaki H, Hemmi H, Hoshino K, Hosaka T, Isokawa G, Oyoshi T, Kodani S (2019) Isolation and structure determination of a new cytotoxic peptide curacozole from Streptomyces curacoi based on genome mining. J Antibiot 72:1–7PubMedCrossRefPubMedCentralGoogle Scholar
  24. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. The John Innes Foundation, NorwichGoogle Scholar
  25. Kodani S, Hudson ME, Durrant MC, Buttner MJ, Nodwell JR, Willey JM (2004) The SapB morphogen is a lantibiotic-like peptide derived from the product of the developmental gene ramS in Streptomyces coelicolor. Proc Natl Acad Sci U S A 101:11448–11453PubMedPubMedCentralCrossRefGoogle Scholar
  26. Kreider G, Brownstein BL (1974) Pleiotropic effects resulting from mutations in genes for ribosomal proteins: analysis of revertants from streptomycin dependence. J Mol Biol 84:159–171PubMedCrossRefPubMedCentralGoogle Scholar
  27. Lambert T (2012) Antibiotics that affect the ribosome. Rev Sci Tech 31:57–64PubMedCrossRefPubMedCentralGoogle Scholar
  28. Li W, Ying X, Guo Y, Yu Z, Zhou X, Deng Z, Kieser H, Chater KF, Tao M (2006) Identification of a gene negatively affecting antibiotic production and morphological differentiation in Streptomyces coelicolor A3(2). J Bacteriol 188:8368–8375PubMedPubMedCentralCrossRefGoogle Scholar
  29. McCoy LS, Xie Y, Tor Y (2011) Antibiotics that target protein synthesis. Wiley Interdiscip Rev RNA 2:209–232PubMedCrossRefPubMedCentralGoogle Scholar
  30. Ochi K (2017) Insights into microbial cryptic gene activation and strain improvement: principle, application and technical aspects. J Antibiot 70:25–40PubMedCrossRefPubMedCentralGoogle Scholar
  31. Ochi K, Hosaka T (2013) New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters. Appl Microbiol Biotechnol 97:87–98PubMedCrossRefPubMedCentralGoogle Scholar
  32. Ochi K, Okamoto S, Tozawa Y, Inaoka T, Hosaka T, Xu J, Kurosawa K (2004) Ribosome engineering and secondary metabolite production. Adv Appl Microbiol 56:155–184PubMedCrossRefPubMedCentralGoogle Scholar
  33. Ohnishi Y, Ishikawa J, Hara H, Suzuki H, Ikenoya M, Ikeda H, Yamashita A, Hattori M, Horinouchi S (2008) Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J Bacteriol 190:4050–4060PubMedPubMedCentralCrossRefGoogle Scholar
  34. Okamoto-Hosoya Y, Hosaka T, Ochi K (2003) An aberrant protein synthesis activity is linked with antibiotic overproduction in rpsL mutants of Streptomyces coelicolor A3(2). Microbiology 149:3299–3309PubMedCrossRefPubMedCentralGoogle Scholar
  35. Opron K, Burton ZF (2019) Ribosome structure, function, and early evolution. Int J Mol Sci 20:40CrossRefGoogle Scholar
  36. Pakula KK, Hansen LH, Vester B (2017) Combined effect of the Cfr methyltransferase and ribosomal protein L3 mutations on resistance to ribosome-targeting antibiotics. Antimicrob Agents Chemother 61:e00862–e00817PubMedPubMedCentralCrossRefGoogle Scholar
  37. Pawlik K, Kotowska M, Chater KF, Kuczek K, Takano E (2007) A cryptic type I polyketide synthase (cpk) gene cluster in Streptomyces coelicolor A3(2). Arch Microbiol 187:87–99PubMedCrossRefPubMedCentralGoogle Scholar
  38. Ramakrishnan V (2002) Ribosome structure and the mechanism of translation. Cell 108:557–572PubMedCrossRefPubMedCentralGoogle Scholar
  39. Robinson LJ, Cameron AD, Stavrinides J (2015) Spontaneous and on point: do spontaneous mutations used for laboratory experiments cause pleiotropic effects that might confound bacterial infection and evolution assays? FEMS Microbiol Lett 362:fnv177PubMedCrossRefPubMedCentralGoogle Scholar
  40. Scaiola A, Leibundgut M, Boehringer D, Caspers P, Bur D, Locher HH, Rueedi G, Ritz D (2019) Structural basis of translation inhibition by cadazolid, a novel quinoxolidinone antibiotic. Sci Rep 9:5634PubMedPubMedCentralCrossRefGoogle Scholar
  41. Schwarz S, Shen J, Kadlec K, Wang Y, Michael GB, Febler AT, Vester B (2019) Lincosamides, streptogramins, penicols, and pleuromutilins: mode of action and mechanisms of resistance. Cold Spring Harb Perspect Med 6:a027037CrossRefGoogle Scholar
  42. Subramani R, Aalbersberg W (2012) Marine Actinomycetes: an ongoing source of novel bioactive metabolites. Microbiol Res 167:571–580PubMedCrossRefPubMedCentralGoogle Scholar
  43. Thoduka SG, Zaleski PA, Dąbrowska Z, Równicki M, Stróżecka J, Górska A, Olejniczak M, Trylska J (2016) Analysis of ribosomal inter-subunit sites as targets for complementary oligonucleotide. Biopolymers 107:23004CrossRefGoogle Scholar
  44. Vester B, Douthwaite S (2001) Macrolide resistance conferred by base substitutions in 23S rRNA. Antimicrob Agents Chemother 45:1–12PubMedPubMedCentralCrossRefGoogle Scholar
  45. Wang G, Hosaka T, Ochi K (2008) Dramatic activation of antibiotic production in Streptomyces coelicolor by cumulative drug resistance mutations. Appl Environ Microbiol 74:2834–2840PubMedPubMedCentralCrossRefGoogle Scholar
  46. Xu J, Tozawa Y, Lai C, Hayashi H, Ochi K (2002) A rifampicin resistance mutation in the rpoB gene confers ppGpp-independent antibiotic production in Streptomyces coelicolor A3(2). Mol Gen Genomics 268:179–189CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Biomolecular Innovation, Institute for Biomedical SciencesShinshu UniversityNaganoJapan
  2. 2.Graduate School of Medicine, Science and TechnologyShinshu UniversityNaganoJapan
  3. 3.Antimicrobial Discovery CenterNortheastern UniversityBostonUSA
  4. 4.Graduate School of Science and TechnologyShinshu UniversityNaganoJapan
  5. 5.Department of Life ScienceHiroshima Institute of TechnologyHiroshimaJapan

Personalised recommendations