Advertisement

Biotechnological utilization of animal gut microbiota for valorization of lignocellulosic biomass

  • Emine Gozde Ozbayram
  • Sabine Kleinsteuber
  • Marcell NikolauszEmail author
Mini-Review
  • 94 Downloads

Abstract

The aim of this review is to give a summary of natural lignocellulose-degrading systems focusing mainly on animal digestive tracts of wood-feeding insects and ruminants in order to find effective strategies that can be applied to improve anaerobic digestion processes in engineered systems. Wood-feeding animals co-evolved with symbiotic microorganisms to digest lignocellulose-rich biomass in a very successful way. Considering the similarities between these animal gut systems and the lignocellulose-based biotechnological processes, the gut with its microbial consortium can be a perfect model for an advanced lignocellulose-degrading biorefinery. The physicochemical properties and structure of the gut may provide a scheme for the process design, and the microbial consortium may be applied as genetic resource for the up-scaled bioreactor communities. Manipulation of the gut microbiota is also discussed in relation to the management of the reactor communities.

Keywords

Biomimicry Anaerobic digestion Biorefinery Gut Microbiota Lignocellulose Bioaugmentation 

Notes

Acknowledgments

The study was funded by the Helmholtz Association, Research Program Renewable Energies. Emine Gozde Ozbayram was supported by the Research Fellowship Program of the Scientific and Technological Research Council of Turkey (grant no. 2214A).The authors would like to acknowledge the financial support from BMBF—German Federal Ministry of Education and Research (# 01DN19018).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Abdeev RM, Goldenkova IV, Musiychuk KA, Piruzian ES (2003) Expression of a thermostable bacterial cellulase in transgenic tobacco plants. Russ J Genet 39(3):300–305CrossRefGoogle Scholar
  2. Abecia L, Martin-Garcia AI, Martinez G, Newbold CJ, Yanez-Ruiz DR (2013) Nutritional intervention in early life to manipulate rumen microbial colonization and methane output by kid goats postweaning. J Anim Sci 91(10):4832–4840.  https://doi.org/10.2527/jas.2012-6142 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Abecia L, Waddams KE, Martinez-Fernandez G, Martin-Garcia AI, Ramos-Morales E, Newbold CJ, Yanez-Ruiz DR (2014) An antimethanogenic nutritional intervention in early life of ruminants modifies ruminal colonization by Archaea. Archaea:Artn 841463.  https://doi.org/10.1155/2014/841463 CrossRefGoogle Scholar
  4. Ács N, Bagi Z, Rakhely G, Minarovics J, Nagy K, Kovacs KL (2015) Bioaugmentation of biogas production by a hydrogen-producing bacterium. Bioresour Technol 186:286–293PubMedCrossRefPubMedCentralGoogle Scholar
  5. Agler MT, Wrenn BA, Zinder SH, Angenent LT (2011) Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. Trends Biotechnol 29(2):70–78.  https://doi.org/10.1016/j.tibtech.2010.11.006 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Aguirre-Villegas HA, Larson RA (2017) Evaluating greenhouse gas emissions from dairy manure management practices using survey data and lifecycle tools. J Clean Prod 143:169–179.  https://doi.org/10.1016/j.jclepro.2016.12.133 CrossRefGoogle Scholar
  7. Akinosho H, Yee K, Close D, Ragauskas A (2014) The emergence of Clostridium thermocellum as a high utility candidate for consolidated bioprocessing applications. Front Chem 2:Article 66.  https://doi.org/10.3389/fchem.2014.00066
  8. Akobi C, Yeo H, Hafez H, Nakhla G (2016) Single-stage and two-stage anaerobic digestion of extruded lignocellulosic biomass. Appl Energy 184:548–559CrossRefGoogle Scholar
  9. Al-Masaudi S, El Kaoutari A, Drula E, Al-Mehdar H, Redwan EM, Lombard V, Henrissat B (2017) A metagenomics investigation of carbohydrate-active enzymes along the gastrointestinal tract of Saudi sheep. Front Microbiol 8Google Scholar
  10. Andert J, Marten A, Brandl R, Brune A (2010) Inter- and intraspecific comparison of the bacterial assemblages in the hindgut of humivorous scarab beetle larvae (Pachnoda spp.). FEMS Microbiol Ecol 74(2):439–449.  https://doi.org/10.1111/j.1574-6941.2010.00950.x CrossRefPubMedPubMedCentralGoogle Scholar
  11. Aneja VP, Schlesinger WH, Erisman JW (2009) Effects of agriculture upon the air quality and climate: research, policy, and regulations. Environ Sci Technol 43(12):4234–4240.  https://doi.org/10.1021/es8024403 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Auer L, Lazuka A, Sillam-Dusses D, Miambi E, O'Donohue M, Hernandez-Raquet G (2017) Uncovering the potential of termite gut microbiome for lignocellulose bioconversion in anaerobic batch bioreactors. Front Microbiol 8:ARTN 2623.  https://doi.org/10.3389/fmicb.2017.02623
  13. Bagi Z, Acs N, Balint B, Horvath L, Dobo K, Perei KR, Rakhely G, Kovacs KL (2007) Biotechnological intensification of biogas production. Appl Microbiol Biotechnol 76(2):473–482PubMedCrossRefPubMedCentralGoogle Scholar
  14. Banerjee G, Scott-Craig JS, Walton JD (2010) Improving enzymes for biomass conversion: A basic research perspective. Bioenerg Res 3(1):82–92.  https://doi.org/10.1007/s12155-009-9067-5 CrossRefGoogle Scholar
  15. Bauer E, Lampert N, Mikaelyan A, Kohler T, Maekawa K, Brune A (2015) Physicochemical conditions, metabolites and community structure of the bacterial microbiota in the gut of wood-feeding cockroaches (Blaberidae: Panesthiinae). FEMS Microbiol Ecol 91(2).  https://doi.org/10.1093/femsec/fiu028 PubMedCrossRefPubMedCentralGoogle Scholar
  16. Bayane A, Guiot SR (2011) Animal digestive strategies versus anaerobic digestion bioprocesses for biogas production from lignocellulosic biomass. Rev Environ Sci Biotechnol 10(1):43–62.  https://doi.org/10.1007/s11157-010-9209-4 CrossRefGoogle Scholar
  17. Berasategui A, Shukla S, Salem H, Kaltenpoth M (2016) Potential applications of insect symbionts in biotechnology. Appl Microbiol Biotechnol 100(4):1567–1577.  https://doi.org/10.1007/s00253-015-7186-9 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bize A, Cardona L, Desmond-Le Quemener E, Battimelli A, Badalato N, Bureau C, Madigou C, Chevret D, Guillot A, Monnet V, Godon JJ, Bouchez T (2015) Shotgun metaproteomic profiling of biomimetic anaerobic digestion processes treating sewage sludge. Proteomics 15(20):3532–3543PubMedCrossRefPubMedCentralGoogle Scholar
  19. Bogner J, Pipatti R, Hashimoto S, Diaz C, Mareckova K, Diaz L, Kjeldsen P, Monni S, Faaij A, Gao QX, Zhang T, Ahmed MA, Sutamihardja RTM, Gregory R (2008) Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation). Waste Manag Res 26(1):11–32.  https://doi.org/10.1177/0734242x07088433 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Borkhardt B, Harholt J, Ulvskov P, Ahring BK, Jorgensen B, Brinch-Pedersen H (2010) Autohydrolysis of plant xylans by apoplastic expression of thermophilic bacterial endo-xylanases. Plant Biotechnol J 8(3):363–374PubMedCrossRefPubMedCentralGoogle Scholar
  21. Bourguignon T, Lo N, Dietrich C, Sobotnik J, Sidek S, Roisin Y, Brune A, Evans TA (2018) Rampant host switching shaped the termite gut microbiome. Curr Biol 28(4):649–654.  https://doi.org/10.1016/j.cub.2018.01.035 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Breznak JA (1982) Intestinal microbiota of termites and other xylophagous insects. Annu Rev Microbiol 36:323–343.  https://doi.org/10.1146/annurev.mi.36.100182.001543 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Breznak JA, Brune A (1994) Role of microorganisms in the digestion of lignocellulose by termites. Annu Rev Entomol 39:453–487CrossRefGoogle Scholar
  24. Broucek J (2014) Production of methane emissions from ruminant husbandry: a review. J Environ Prot 5:1482–1493.  https://doi.org/10.4236/jep.2014.515141 CrossRefGoogle Scholar
  25. Brune A (2007) Microbiology—Woodworker's digest. Nature 450(7169):487–488.  https://doi.org/10.1038/450487a CrossRefPubMedPubMedCentralGoogle Scholar
  26. Brune A (2014) Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12(3):168–180.  https://doi.org/10.1038/nrmicro3182 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Brune A, Dietrich C (2015) The gut microbiota of termites: digesting the diversity in the light of ecology and evolution. Annu Rev Microbiol 69:145–166.  https://doi.org/10.1146/annurev-micro-092412-155715 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Brune A, Ohkuma M (2010) Role of the termite gut microbiota in symbiotic digestion. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 439–475CrossRefGoogle Scholar
  29. Bruni E, Jensen AP, Angelidaki I (2010) Comparative study of mechanical, hydrothermal, chemical and enzymatic treatments of digested biofibers to improve biogas production. Bioresour Technol 101(22):8713–8717PubMedCrossRefPubMedCentralGoogle Scholar
  30. Bryant MP, Small N (1960) Observations on the ruminal microorganisms of isolated and inoculated calves. J Dairy Sci 43(5):654–667.  https://doi.org/10.3168/jds.S0022-0302(60)90216-2 CrossRefGoogle Scholar
  31. Buan NR (2018) Methanogens: pushing the boundaries of biology. Emerg Top Life Sci 2(4):629–646.  https://doi.org/10.1042/etls20180031 CrossRefGoogle Scholar
  32. Cairo JPLF, Leonardo FC, Alvarez TM, Ribeiro DA, Buchli F, Costa-Leonardo AM, Carazzolle MF, Costa FF, Leme AFP, Pereira GAG, Squina FM (2011) Functional characterization and target discovery of glycoside hydrolases from the digestome of the lower termite Coptotermes gestroi. Biotechnol Biofuels 4Google Scholar
  33. Cater M, Fanedl L, Malovrh S, Logar RM (2015) Biogas production from brewery spent grain enhanced by bioaugmentation with hydrolytic anaerobic bacteria. Bioresour Technol 186:261–269PubMedCrossRefGoogle Scholar
  34. Cazemier AE, Verdoes JC, Reubsaet FA, Hackstein JH, van der Drift C, Op den Camp HJ (2003) Promicromonospora pachnodae sp. nov., a member of the (hemi)cellulolytic hindgut flora of larvae of the scarab beetle Pachnoda marginata. Antonie Van Leeuwenhoek 83(2):135–148PubMedCrossRefGoogle Scholar
  35. Chalupa W (1977) Manipulating Rumen Fermentation. J Anim Sci 45(3):585–599CrossRefGoogle Scholar
  36. Chapleur O, Bize A, Serain T, Mazeas L, Bouchez T (2014) Co-inoculating ruminal content neither provides active hydrolytic microbes nor improves methanization of 13 C-cellulose in batch digesters. FEMS Microbiol Ecol 87(3):616–629PubMedCrossRefGoogle Scholar
  37. Choudhury PK, Salem AZM, Jena R, Kumar S, Singh R, Puniya AK (2015) Rumen microbiology: an overview. In: Puniya AK, Singh R, Kamra DN (eds) Rumen microbiology: from evolution to revolution. Springer, New Delhi, pp 3–16CrossRefGoogle Scholar
  38. Christy PM, Gopinath LR, Divya D (2014) A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renew Sust Energ Rev 34:167–173CrossRefGoogle Scholar
  39. Cragg SM, Beckham GT, Bruce NC, Bugg TDH, Distel DL, Dupree P, Etxabe AG, Goodell BS, Jellison J, McGeehan JE, McQueen-Mason SJ, Schnorr K, Walton PH, Watts JEM, Zimmer M (2015) Lignocellulose degradation mechanisms across the tree of life. Curr Opin Chem Biol 29:108–119.  https://doi.org/10.1016/j.cbpa.2015.10.018 CrossRefPubMedGoogle Scholar
  40. Cunha IS, Barreto CC, Costa OYA, Bomfim MA, Castro AP, Kruger RH, Quirino BF (2011) Bacteria and Archaea community structure in the rumen microbiome of goats (Capra hircus) from the semiarid region of Brazil. Anaerobe 17(3):118–124.  https://doi.org/10.1016/j.anaerobe.2011.04.018 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Czerkawski JW, Breckenridge G (1977) Design and development of a long-term rumen simulation technique (RUSITEC). Brit J Nutr 38(3):371–384PubMedCrossRefPubMedCentralGoogle Scholar
  42. da Silva SS, Chandel AK, Wickramasinghe SR, Dominguez JMG (2012) Fermentative production of value-added products from lignocellulosic biomass. J Biomed Biotechnol: Artn 826162.  https://doi.org/10.1155/2012/826162 Google Scholar
  43. Dai X, Tian Y, Li JT, Su XY, Wang XW, Zhao SG, Liu L, Luo YF, Liu D, Zheng HJ, Wang JQ, Dong ZY, Hu SN, Huang L (2015) Metatranscriptomic analyses of plant cell wall polysaccharide degradation by microorganisms in the cow rumen. Appl Environ Microbiol 81(4):1375–1386PubMedPubMedCentralCrossRefGoogle Scholar
  44. De Vrieze J, Verstraete W (2016) Perspectives for microbial community composition in anaerobic digestion: from abundance and activity to connectivity. Environ Microbiol 18(9):2797–2809.  https://doi.org/10.1111/1462-2920.13437 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Del Pozo MV, Fernandez-Arrojo L, Gil-Martinez J, Montesinos A, Chernikova TN, Nechitaylo TY, Waliszek A, Tortajada M, Rojas A, Huws SA, Golyshina OV, Newbold CJ, Polaina J, Ferrer M, Golyshin PN (2012) Microbial beta-glucosidases from cow rumen metagenome enhance the saccharification of lignocellulose in combination with commercial cellulase cocktail. Biotechnol Biofuels 5Google Scholar
  46. Demirel B, Scherer P (2008) The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev Environ Sci Biotechnol 7(2):173–190.  https://doi.org/10.1007/s11157-008-9131-1 CrossRefGoogle Scholar
  47. Deng YY, Huang ZX, Ruan WQ, Zhao MX, Miao HF, Ren HY (2017) Co-inoculation of cellulolytic rumen bacteria with methanogenic sludge to enhance methanogenesis of rice straw. Int Biodeterior Biodegradation 117:224–235CrossRefGoogle Scholar
  48. Desvaux M (2005) Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia. FEMS Microbiol Rev 29(4):741–764PubMedCrossRefPubMedCentralGoogle Scholar
  49. Deublein D, Steinhauser A (2008) Biogas from waste and renewable resources: an introduction. Wiley, HobokenCrossRefGoogle Scholar
  50. Dicks H (2017) A new way of valuing nature: Articulating biomimicry and ecosystem services. Environ Ethics 39(3):281–299CrossRefGoogle Scholar
  51. Do TH, Dao TK, Nguyen KHV, Le NG, Nguyen TMP, Le TL, Phung TN, van Straalen NM, Roelofs D, Truong NH (2018) Metagenomic analysis of bacterial community structure and diversity of lignocellulolytic bacteria in Vietnamese native goat rumen. Asian Austral J Anim 31(5):738–747CrossRefGoogle Scholar
  52. Doi RH, Kosugi A (2004) Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat Rev Microbiol 2(7):541–551PubMedPubMedCentralCrossRefGoogle Scholar
  53. Eadie JM (1962) Development of rumen microbial populations in lambs and calves under various conditions of management. J Gen Microbiol 29(4):563.  https://doi.org/10.1099/00221287-29-4-563 CrossRefGoogle Scholar
  54. Egert M, Wagner B, Lemke T, Brune A, Friedrich MW (2003) Microbial community structure in midgut and hindgut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Appl Environ Microbiol 69(11):6659–6668.  https://doi.org/10.1128/Aem.69.11.6657-6668.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Engel P, Moran NA (2013) The gut microbiota of insects—diversity in structure and function. FEMS Microbiol Rev 37(5):699–735.  https://doi.org/10.1111/1574-6976.12025 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Enzmann F, Mayer F, Rother M, Holtmann D (2018) Methanogens: biochemical background and biotechnological applications. AMB Express 8Google Scholar
  57. Fernandez L, Langa S, Martin V, Maldonado A, Jimenez E, Martin R, Rodriguez JM (2013) The human milk microbiota: origin and potential roles in health and disease. Pharmacol Res 69(1):1–10.  https://doi.org/10.1016/j.phrs.2012.09.001 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Ferrer M, Martinez-Martinez M, Bargiela R, Streit WR, Golyshina OV, Golyshin PN (2016) Estimating the success of enzyme bioprospecting through metagenomics: current status and future trends. Microb Biotechnol 9(1):22–34PubMedCrossRefPubMedCentralGoogle Scholar
  59. Fonty G, Gouet P, Jouany JP, Senaud J (1987) Establishment of the microflora and anaerobic fungi in the rumen of lambs. J Gen Microbiol 133:1835–1843Google Scholar
  60. Fonty G, Joblin K, Chavarot M, Roux R, Naylor G, Michallon F (2007) Establishment and development of ruminal hydrogenotrophs in methanogen-free lambs. Appl Environ Microbiol 73(20):6391–6403.  https://doi.org/10.1128/Aem.00181-07 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Fotidis IA, Treu L, Angelidaki I (2017) Enriched ammonia-tolerant methanogenic cultures as bioaugmentation inocula in continuous biomethanation processes. J Clean Prod 166:1305–1313CrossRefGoogle Scholar
  62. Fotidis IA, Wang H, Fiedel NR, Luo G, Karakashev DB, Angelidaki I (2014) Bioaugmentation as a solution to increase methane production from an ammonia-rich substrate. Environ Sci Technol 48(13):7669–7676PubMedCrossRefPubMedCentralGoogle Scholar
  63. Fukatsu T, Hosokawa T (2002) Capsule-transmitted gut symbiotic bacterium of the Japanese common plataspid stinkbug, Megacopta punctatissima. Appl Environ Microbiol 68(1):389–396.  https://doi.org/10.1128/Aem.68.1.389-396.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Gagen EJ, Padmanabha J, Denman SE, McSweeney CS (2015) Hydrogenotrophic culture enrichment reveals rumen Lachnospiraceae and Ruminococcaceae acetogens and hydrogen-responsive Bacteroidetes from pasture-fed cattle. FEMS Microbiol Lett 362(14):fnv104.  https://doi.org/10.1093/femsle/fnv104 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Gharechahi J, Salekdeh GH (2018) A metagenomic analysis of the camel rumen's microbiome identifies the major microbes responsible for lignocellulose degradation and fermentation. Biotechnol Biofuels 11Google Scholar
  66. Gijzen HJ, Zwart KB, Verhagen FJ, Vogels GP (1988) High-Rate two-phase process for the anaerobic degradation of cellulose, employing rumen microorganisms for an efficient acidogenesis. Biotechnol Bioeng 31(5):418–425.  https://doi.org/10.1002/bit.260310505 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Godon JJ, Arcemisbehere L, Escudie R, Harmand J, Miambi E, Steyer JP (2013) Overview of the oldest existing set of substrate-optimized anaerobic processes: digestive tracts. Bioenerg Res 6(3):1063–1081.  https://doi.org/10.1007/s12155-013-9339-y CrossRefGoogle Scholar
  68. Godon JJ, Arulazhagan P, Steyer JP, Hamelin J (2016) Vertebrate bacterial gut diversity: size also matters. BMC Ecol 16:12.  https://doi.org/10.1186/s12898-016-0071-2 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Güllert S, Fischer MA, Turaev D, Noebauer B, Ilmberger N, Wemheuer B, Alawi M, Rattei T, Daniel R, Schmitz RA, Grundhoff A, Streit WR (2016) Deep metagenome and metatranscriptome analyses of microbial communities affiliated with an industrial biogas fermenter, a cow rumen, and elephant feces reveal major differences in carbohydrate hydrolysis strategies. Biotechnol Biofuels 9:121PubMedPubMedCentralCrossRefGoogle Scholar
  70. Guzman CE, Bereza-Malcolm LT, De Groef B, Franks AE (2015) Presence of selected methanogens, fibrolytic bacteria, and proteobacteria in the gastrointestinal tract of neonatal dairy calves from birth to 72 hours. PLoS One 10(7):ARTN e0133048).  https://doi.org/10.1371/journal.pone.0133048 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Harrison MD, Geijskes J, Coleman HD, Shand K, Kinkema M, Palupe A, Hassall R, Sainz M, Lloyd R, Miles S, Dale JL (2011) Accumulation of recombinant cellobiohydrolase and endoglucanase in the leaves of mature transgenic sugar cane. Plant Biotechnol J 9(8):884–896PubMedCrossRefPubMedCentralGoogle Scholar
  72. Harrison MD, Zhang ZY, Shand K, Chong BF, Nichols J, Oeller P, O'Hara IM, Doherty WOS, Dale JL (2014) The combination of plant-expressed cellobiohydrolase and low dosages of cellulases for the hydrolysis of sugar cane bagasse. Biotechnol Biofuels 7PubMedPubMedCentralCrossRefGoogle Scholar
  73. Hart KJ, Yanez-Ruiz DR, Duval SM, McEwan NR, Newbold CJ (2008) Plant extracts to manipulate rumen fermentation. Anim Feed Sci Technol 147(1–3):8–35.  https://doi.org/10.1016/j.anifeedsci.2007.09.007 CrossRefGoogle Scholar
  74. He SM, Ivanova N, Kirton E, Allgaier M, Bergin C, Scheffrahn RH, Kyrpides NC, Warnecke F, Tringe SG, Hugenholtz P (2013) Comparative metagenomic and metatranscriptomic analysis of hindgut paunch microbiota in wood- and dung-feeding higher termites. PLoS One 8(4):e61126.  https://doi.org/10.1371/journal.pone.0061126e61126 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Henderson G, Cox F, Ganesh S, Jonker A, Young W, Global Rumen Census C, Janssen PH (2015) Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep 5:14567.  https://doi.org/10.1038/srep14567 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Henderson G, Naylor GE, Leahy SC, Janssen PH (2010) Presence of novel, potentially homoacetogenic bacteria in the rumen as determined by analysis of formyltetrahydrofolate synthetase sequences from ruminants. Appl Environ Microbiol 76(7):2058–2066.  https://doi.org/10.1128/Aem.02580-09 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Herbel Z, Rakhely G, Bagi Z, Ivanova G, Acs N, Kovacs E, Kovacs KL (2010) Exploitation of the extremely thermophilic Caldicellulosiruptor saccharolyticus in hydrogen and biogas production from biomasses. Environ Technol 31(8–9):1017–1024PubMedCrossRefPubMedCentralGoogle Scholar
  78. Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, Luo SJ, Clark DS, Chen F, Zhang T, Mackie RI, Pennacchio LA, Tringe SG, Visel A, Woyke T, Wang Z, Rubin EM (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331(6016):463–467PubMedCrossRefPubMedCentralGoogle Scholar
  79. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME (2014) The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11(8):506–514.  https://doi.org/10.1038/nrgastro.2014.66 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Hongoh Y, Deevong P, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, Vongkaluang C, Noparatnaraporn N, Kudol T (2005) Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol 71(11):6590–6599.  https://doi.org/10.1128/Aem.71.11.6590-6599.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Hongoh Y, Ohkuma M, Kudo T (2003) Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera; Rhinotermitidae). FEMS Microbiol Ecol 44(2):231–242PubMedCrossRefPubMedCentralGoogle Scholar
  82. Hook SE, Wright ADG, McBride BW (2010) Methanogens: methane producers of the rumen and mitigation strategies. Archaea:Artn 945785.  https://doi.org/10.1155/2010/945785 CrossRefGoogle Scholar
  83. Hosokawa T, Kikuchi Y, Nikoh N, Shimada M, Fukatsu T (2006) Strict host-symbiont cospeciation and reductive genome evolution in insect gut bacteria. PLoS Biol 4(10):1841–1851.  https://doi.org/10.1371/journal.pbio.0040337 CrossRefGoogle Scholar
  84. Huang SW, Zhang HY, Marshall S, Jackson TA (2010) The scarab gut: a potential bioreactor for bio-fuel production. Insect Sci 17(3):175–183.  https://doi.org/10.1111/j.1744-7917.2010.01320.x CrossRefGoogle Scholar
  85. Inward D, Beccaloni G, Eggleton P (2007) Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biol Lett 3(3):331–335.  https://doi.org/10.1098/rsbl.2007.0102 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Jami E, Israel A, Kotser A, Mizrahi I (2013) Exploring the bovine rumen bacterial community from birth to adulthood. ISME J 7(6):1069–1079.  https://doi.org/10.1038/ismej.2013.2 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Janke L, Leite A, Batista K, Weinrich S, Strauber H, Nikolausz M, Nelles M, Stinner W (2016) Optimization of hydrolysis and volatile fatty acids production from sugarcane filter cake: effects of urea supplementation and sodium hydroxide pretreatment. Bioresour Technol 199:235–244.  https://doi.org/10.1016/j.biortech.2015.07.117 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Janke L, Weinrich S, Leite AF, Terzariol FK, Nikolausz M, Nelles M, Stinner W (2017) Improving anaerobic digestion of sugarcane straw for methane production: combined benefits of mechanical and sodium hydroxide pretreatment for process designing. Energ Convers Manag 141:378–389CrossRefGoogle Scholar
  89. Janssen PH, Kirs M (2008) Structure of the archaeal community of the rumen. Appl Environ Microbiol 74(12):3619–3625.  https://doi.org/10.1128/AEM.02812-07 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Jeyanathan J, Martin C, Morgavi DP (2014) The use of direct-fed microbials for mitigation of ruminant methane emissions: a review. Animal 8(2):250–261.  https://doi.org/10.1017/S1751731113002085 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Jiang XR, Zhou XY, Jiang WY, Gao XR, Li WL (2011) Expressions of thermostable bacterial cellulases in tobacco plant. Biotechnol Lett 33(9):1797–1803PubMedCrossRefPubMedCentralGoogle Scholar
  92. Jiao JZ, Li XP, Beauchemin KA, Tan ZL, Tang SX, Zhou CS (2015) Rumen development process in goats as affected by supplemental feeding v. grazing: age-related anatomic development, functional achievement and microbial colonisation. Brit J Nutr 113(6):888–900.  https://doi.org/10.1017/S0007114514004413 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Jin W, Cheng YF, Zhu WY (2017) The community structure of Methanomassiliicoccales in the rumen of Chinese goats and its response to a high-grain diet. J Anim Sci Biotechno 1(8):47.  https://doi.org/10.1186/s40104-017-0178-0 CrossRefGoogle Scholar
  94. Karakashev D, Batstone DJ, Angelidaki I (2005) Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Appl Environ Microbiol 71(1):331–338PubMedPubMedCentralCrossRefGoogle Scholar
  95. Ke J, Chen SL (2013) Selective lignin modification process in termites for effective lignocellulose deconstruction. Abstr Pap Am Chem S 245Google Scholar
  96. Ke J, Laskar DD, Singh D, Chen SL (2011) In situ lignocellulosic unlocking mechanism for carbohydrate hydrolysis in termites: crucial lignin modification. Biotechnology for Biofuels 4PubMedPubMedCentralCrossRefGoogle Scholar
  97. Ke J, Sun JZ, Nguyen HD, Singh D, Lee KC, Beyenal H, Chen SL (2010) In-situ oxygen profiling and lignin modification in guts of wood-feeding termites. Insect Sci 17(3):277–290CrossRefGoogle Scholar
  98. Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol 199:42–48.  https://doi.org/10.1016/j.biortech.2015.08.085 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Kinet R, Destain J, Hiligsmann S, Thonart P, Delhalle L, Taminiau B, Daube G, Delvigne F (2015) Thermophilic and cellulolytic consortium isolated from composting plants improves anaerobic digestion of cellulosic biomass: toward a microbial resource management approach. Bioresour Technol 189:138–144PubMedCrossRefPubMedCentralGoogle Scholar
  100. Kitade O (2004) Comparison of symbiotic flagellate faunae between termites and a wood-feeding cockroach of the genus Cryptocercus. Microbes Environ 19(3):215–220.  https://doi.org/10.1264/jsme2.19.215 CrossRefGoogle Scholar
  101. Klieve AV, Hennessy D, Ouwerkerk D, Forster RJ, Mackie RI, Attwood GT (2003) Establishing populations of Megasphaera elsdenii YE 34 and Butyrivibrio fibrisolvens YE 44 in the rumen of cattle fed high grain diets. J Appl Microbiol 95(3):621–630.  https://doi.org/10.1046/j.1365-2672.2003.02024.x CrossRefPubMedPubMedCentralGoogle Scholar
  102. Kmet V, Flint HJ, Wallace RJ (1993) Probiotics and manipulation of rumen development and function. Arch Tierernahr 44(1):1–10PubMedCrossRefPubMedCentralGoogle Scholar
  103. Kohler T, Dietrich C, Scheffrahn RH, Brune A (2012) High-resolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding hgher termites (Nasutitermes spp.). Appl Environ Microbiol 78(13):4691–4701.  https://doi.org/10.1128/Aem.00683-12 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Kolsch G, Pedersen BV (2010) Can the tight co-speciation between reed beetles (Col., Chrysomelidae, Donaciinae) and their bacterial endosymbionts, which provide cocoon material, clarify the deeper phylogeny of the hosts? Mol Phylogenet Evol 54(3):810–821.  https://doi.org/10.1016/j.ympev.2009.10.038 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Kovacs KL, Acs N, Kovacs E, Wirth R, Rakhely G, Strang O, Herbel Z, Bagi Z (2013) Improvement of biogas production by bioaugmentation. Biomed Res Int:Article ID 482653.  https://doi.org/10.1155/2013/482653 CrossRefGoogle Scholar
  106. Kröber M, Bekel T, Diaz NN, Goesmann A, Jaenicke S, Krause L, Miller D, Runte KJ, Viehover P, Puhler A, Schluter A (2009) Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing. J Biotechnol 142(1):38–49PubMedCrossRefPubMedCentralGoogle Scholar
  107. Lang K, Schuldes J, Klingl A, Poehlein A, Daniel R, Brune A (2015) New mode of energy metabolism in the seventh order of methanogens as revealed by comparative genome analysis of “Candidatus Methanoplasma termitum”. Appl Environ Microbiol 81(4):1338–1352.  https://doi.org/10.1128/aem.03389-14 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Leite AF, Janke L, Harms H, Zang JW, Fonseca-Zang WA, Stinner W, Nikolausz M (2015) Assessment of the variations in characteristics and methane potential of major waste products from the Brazilian bioethanol industry along an operating season. Energy Fuel 29(7):4022–4029CrossRefGoogle Scholar
  109. Lemke T, Stingl U, Egert M, Friedrich MW, Brune A (2003) Physicochemical conditions and microbial activities in the highly alkaline gut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Appl Environ Microbiol 69(11):6650–6658PubMedPubMedCentralCrossRefGoogle Scholar
  110. Levy B, Jami E (2018) Exploring the prokaryotic community associated with the rumen ciliate protozoa population. Front Microbiol 9:2526.  https://doi.org/10.3389/fmicb.2018.02526 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI (2008) Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol 6(10):776–788.  https://doi.org/10.1038/nrmicro1978 CrossRefPubMedPubMedCentralGoogle Scholar
  112. Letunic I, Bork P (2019). Interactive Tree Of Life (iTOL) v4: recent updates and new developments."Nucleic Acids Res 47(W1): W256-W259.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Li RW, Connor EE, Li CJ, Baldwin RL, Sparks ME (2012) Characterization of the rumen microbiota of pre-ruminant calves using metagenomic tools. Environ Microbiol 14(1):129–139.  https://doi.org/10.1111/j.1462-2920.2011.02543.x CrossRefPubMedPubMedCentralGoogle Scholar
  114. Lim S, Seo J, Choi H, Yoon D, Nam J, Kim H, Cho S, Chang J (2013) Metagenome analysis of protein domain collocation within cellulase genes of goat rumen microbes. Asian Aust J Anim 26(8):1144–1151CrossRefGoogle Scholar
  115. Lindner J, Zielonka S, Oechsner H, Lemmer A (2016) Is the continuous two-stage anaerobic digestion process well suited for all substrates? Bioresour Technol 200:470–476PubMedCrossRefPubMedCentralGoogle Scholar
  116. Lü F, Ji JQ, Shao LM, He PJ (2013) Bacterial bioaugmentation for improving methane and hydrogen production from microalgae. Biotechnol Biofuels 6:92.  https://doi.org/10.1186/1754-6834-6-92 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Lucas R, Kuchenbuch A, Fetzer I, Harms H, Kleinsteuber S (2015) Long-term monitoring reveals stable and remarkably similar microbial communities in parallel full-scale biogas reactors digesting energy crops. FEMS Microbiol Ecol 91(3).  https://doi.org/10.1093/femsec/fiv004
  118. Lv Z, Leite AF, Harms H, Glaser K, Liebetrau J, Kleinsteuber S, Nikolausz M (2019) Microbial community shifts in biogas reactors upon complete or partial ammonia inhibition. Appl Microbiol Biotechnol 103(1):519–533PubMedCrossRefPubMedCentralGoogle Scholar
  119. Martin-Ryals A, Schideman L, Li P, Wilkinson H, Wagner R (2015) Improving anaerobic digestion of a cellulosic waste via routine bioaugmentation with cellulolytic microorganisms. Bioresour Technol 189:62–70PubMedCrossRefPubMedCentralGoogle Scholar
  120. Martin SA, Nisbet DJ (1992) Effect of direct-fed microbials on rumen microbial fermentation. J Dairy Sci 75(6):1736–1744.  https://doi.org/10.3168/jds.S0022-0302(92)77932-6 CrossRefPubMedPubMedCentralGoogle Scholar
  121. Mason PM, Stuckey DC (2016) Biofilms, bubbles and boundary layers—a new approach to understanding cellulolysis in anaerobic and ruminant digestion. Water Res 104:93–100.  https://doi.org/10.1016/j.watres.2016.07.063 CrossRefPubMedPubMedCentralGoogle Scholar
  122. Mathai PP, Zitomer DH, Maki JS (2015) Quantitative detection of syntrophic fatty acid-degrading bacterial communities in methanogenic environments. Microbiol-Sgm 161:1189–1197.  https://doi.org/10.1099/mic.0.000085 CrossRefGoogle Scholar
  123. Minkley N, Fujita A, Brune A, Kirchner WH (2006) Nest specificity of the bacterial community in termite guts (Hodotermes mossambicus). Insect Soc 53(3):339–344CrossRefGoogle Scholar
  124. Mir BA, Myburg AA, Mizrachi E, Cowan DA (2017) In planta expression of hyperthermophilic enzymes as a strategy for accelerated lignocellulosic digestion. Sci Rep Uk 7(1):11462.  https://doi.org/10.1038/s41598-017-11026-1 CrossRefGoogle Scholar
  125. Mulat DG, Huerta SG, Kalyani D, Horn SJ (2018) Enhancing methane production from lignocellulosic biomass by combined steam-explosion pretreatment and bioaugmentation with cellulolytic bacterium Caldicellulosiruptor bescii. Biotechnol Biofuels 11Google Scholar
  126. Musa HH, Wu SL, Zhu CH, Seri HI, Zhu GQ (2009) The potential benefits of probiotics in animal production and health. J Anim Vet Adv 8(2):313–321Google Scholar
  127. Nalepa CA (2015) Origin of termite eusociality: trophallaxis integrates the social, nutritional, and microbial environments. Ecol Entomol 40(4):323–335.  https://doi.org/10.1111/een.12197 CrossRefGoogle Scholar
  128. Nettmann E, Bergmann I, Mundt K, Linke B, Klocke M (2008) Archaea diversity within a commercial biogas plant utilizing herbal biomass determined by 16S rDNA and mcrA analysis. J Appl Microbiol 105(6):1835–1850PubMedCrossRefPubMedCentralGoogle Scholar
  129. Nettmann E, Bergmann I, Pramschufer S, Mundt K, Plogsties V, Herrmann C, Klocke M (2010) Polyphasic analyses of methanogenic archaeal communities in agricultural biogas plants. Appl Environ Microbiol 76(8):2540–2548PubMedPubMedCentralCrossRefGoogle Scholar
  130. Nkemka VN, Gilroyed B, Yanke J, Gruninger R, Vedres D, McAllister T, Hao XY (2015) Bioaugmentation with an anaerobic fungus in a two-stage process for biohydrogen and biogas production using corn silage and cattail. Bioresour Technol 185:79–88.  https://doi.org/10.1016/j.biortech.2015.02.100 CrossRefPubMedPubMedCentralGoogle Scholar
  131. Noel SJ, Attwood GT, Rakonjac J, Moon CD, Waghorn GC, Janssen PH (2017) Seasonal changes in the digesta-adherent rumen bacterial communities of dairy cattle grazing pasture. PLoS One 12(3):ARTN e0173819).  https://doi.org/10.1371/journal.pone.0173819 PubMedPubMedCentralCrossRefGoogle Scholar
  132. Nyonyo T, Shinkai T, Mitsumori M (2014) Improved culturability of cellulolytic rumen bacteria and phylogenetic diversity of culturable cellulolytic and xylanolytic bacteria newly isolated from the bovine rumen. FEMS Microbiol Ecol 88(3):528–537PubMedCrossRefPubMedCentralGoogle Scholar
  133. Ohkuma M (2003) Termite symbiotic systems: efficient bio-recycling of lignocellulose. Appl Microbiol Biotechnol 61(1):1–9.  https://doi.org/10.1007/s00253-002-1189-z CrossRefPubMedPubMedCentralGoogle Scholar
  134. Okwakol MJN (1980) Estimation of soil and organic-matter consumption by termites of the genus Cubitermes. Afr J Ecol 18(1):127–131.  https://doi.org/10.1111/j.1365-2028.1980.tb00276.x CrossRefGoogle Scholar
  135. Omar B, Abou-Shanab R, El-Gammal M, Fotidis IA, Kougias PG, Zhang YF, Angelidaki I (2018) Simultaneous biogas upgrading and biochemicals production using anaerobic bacterial mixed cultures. Water Res 142:86–95.  https://doi.org/10.1016/j.watres.2018.05.049 CrossRefPubMedPubMedCentralGoogle Scholar
  136. Öner BE, Akyol C, Bozan M, Ince O, Aydin S, Ince B (2018) Bioaugmentation with Clostridium thermocellum to enhance the anaerobic biodegradation of lignocellulosic agricultural residues. Bioresour Technol 249:620–625CrossRefGoogle Scholar
  137. Oren A (2014) The Family Methanotrichaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes: other major lineages of bacteria and the Archaea. Springer, Berlin Heidelberg, pp 297–306Google Scholar
  138. Ozbayram EG, Akyol C, Ince B, Karakoc C, Ince O (2018a) Rumen bacteria at work: bioaugmentation strategies to enhance biogas production from cow manure. J Appl Microbiol 124(2):491–502.  https://doi.org/10.1111/jam.13668 CrossRefPubMedPubMedCentralGoogle Scholar
  139. Ozbayram EG, Ince O, Ince B, Harms H, Kleinsteuber S (2018b) Comparison of rumen and manure microbiomes and implications for the inoculation of anaerobic digesters. Microorganisms 6:15.  https://doi.org/10.3390/microorganisms6010015 CrossRefPubMedCentralGoogle Scholar
  140. Ozbayram EG, Kleinsteuber S, Nikolausz M, Ince B, Ince O (2017) Effect of bioaugmentation by cellulolytic bacteria enriched from sheep rumen on methane production from wheat straw. Anaerobe 46:122–130.  https://doi.org/10.1016/j.anaerobe.2017.03.013 CrossRefPubMedPubMedCentralGoogle Scholar
  141. Ozbayram EG, Kleinsteuber S, Nikolausz M, Ince B, Ince O (2018c) Bioaugmentation of anaerobic digesters treating lignocellulosic feedstock by enriched microbial consortia. Eng Life Sci 18(7):440–446.  https://doi.org/10.1002/elsc.201700199 CrossRefGoogle Scholar
  142. Ozbayram EG, Kleinsteuber S, Nikolausz M, Ince B, Ince O (2018d) Enrichment of lignocellulose-degrading microbial communities from natural and engineered methanogenic environments. Appl Microbiol Biotechnol 102(2):1035–1043.  https://doi.org/10.1007/s00253-017-8632-7 CrossRefPubMedPubMedCentralGoogle Scholar
  143. Paul SS, Dey A, Baro D, Punia BS (2017) Comparative community structure of archaea in rumen of buffaloes and cattle. J Sci Food Agric 97(10):3284–3293.  https://doi.org/10.1002/jsfa.8177 CrossRefPubMedPubMedCentralGoogle Scholar
  144. Peng XW, Borner RA, Nges IA, Liu J (2014) Impact of bioaugmentation on biochemical methane potential for wheat straw with addition of Clostridium cellulolyticum. Bioresour Technol 152:567–571PubMedCrossRefPubMedCentralGoogle Scholar
  145. Pitta DW, Kumar S, Veiccharelli B, Parmar N, Reddy B, Joshi CG (2014) Bacterial diversity associated with feeding dry forage at different dietary concentrations in the rumen contents of Mehshana buffalo (Bubalus bubalis) using 16S pyrotags. Anaerobe 25:31–41PubMedCrossRefPubMedCentralGoogle Scholar
  146. Prochazka J, Mrazek J, Strosova L, Fliegerova K, Zabranska J, Dohanyos M (2012) Enhanced biogas yield from energy crops with rumen anaerobic fungi. Eng Life Sci 12(3):343–351CrossRefGoogle Scholar
  147. Quintero M, Castro L, Ortiz C, Guzman C, Escalante H (2012) Enhancement of starting up anaerobic digestion of lignocellulosic substrate: fique's bagasse as an example. Bioresour Technol 108:8–13PubMedCrossRefPubMedCentralGoogle Scholar
  148. Rahman NA, Parks DH, Vanwonterghem I, Morrison M, Tyson GW, Hugenholtz P (2016) A Phylogenomic analysis of the bacterial phylum fibrobacteres. Front Microbiol 7(6):1469.  https://doi.org/10.3389/fmicb.2015.01469 CrossRefGoogle Scholar
  149. Ransom-Jones E, Jones DL, McCarthy AJ, McDonald JE (2012) The Fibrobacteres: an important phylum of cellulose-degrading bacteria. Microb Ecol 63(2):267–281PubMedCrossRefPubMedCentralGoogle Scholar
  150. Rastogi G, Ranade DR, Yeole TY, Patole MS, Shouche YS (2008) Investigation of methanogen population structure in biogas reactor by molecular characterization of methyl-coenzyme M reductase A (mcrA) genes. Bioresour Technol 99(13):5317–5326PubMedCrossRefPubMedCentralGoogle Scholar
  151. Rey M, Enjalbert F, Combes S, Cauquil L, Bouchez O, Monteils V (2014) Establishment of ruminal bacterial community in dairy calves from birth to weaning is sequential. J Appl Microbiol 116(2):245–257.  https://doi.org/10.1111/jam.12405 CrossRefPubMedPubMedCentralGoogle Scholar
  152. Rodriguez JM, Murphy K, Stanton C, Ross RP, Kober OI, Juge N, Avershina E, Rudi K, Narbad A, Jenmalm MC, Marchesi JR, Collado MC (2015) The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health D 26:ARTN 26050.  https://doi.org/10.3402/mehd.v26.26050
  153. Romano RT, Zhang RH, Teter S, McGarvey JA (2009) The effect of enzyme addition on anaerobic digestion of Jose tall wheat grass. Bioresour Technol 100(20):4564–4571.  https://doi.org/10.1016/j.biortech.2008.12.065 CrossRefPubMedPubMedCentralGoogle Scholar
  154. Rosenberg E, Zilber-Rosenberg I (2011) Symbiosis and development: the hologenome concept. Birth Defects Res C 93(1):56–66.  https://doi.org/10.1002/bdrc.20196 CrossRefGoogle Scholar
  155. Rosenberg E, Zilber-Rosenberg I (2016) Microbes drive evolution of animals and plants: the hologenome concept. Mbio 7(2):ARTN e01395-15).  https://doi.org/10.1128/mBio.01395-15
  156. Rosenberg E, Zilber-Rosenberg I (2018) The hologenome concept of evolution after 10 years. Microbiome 6:ARTN 78.  https://doi.org/10.1186/s40168-018-0457-9
  157. Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454(7206):841–845.  https://doi.org/10.1038/nature07190 CrossRefPubMedPubMedCentralGoogle Scholar
  158. Sabree ZL, Huang CY, Arakawa G, Tokuda G, Lo N, Watanabe H, Moran NA (2012) Genome shrinkage and loss of nutrient-providing potential in the obligate symbiont of the primitive termite Mastotermes darwiniensis. Appl Environ Microbiol 78(1):204–210.  https://doi.org/10.1128/Aem.06540-11 CrossRefPubMedPubMedCentralGoogle Scholar
  159. Sambusiti C, Monlau F, Ficara E, Carrere H, Malpei F (2013) A comparison of different pre-treatments to increase methane production from two agricultural substrates. Appl Energy 104:62–70CrossRefGoogle Scholar
  160. Saunois M, Bousquet P, Poulter B, Peregon A, Ciais P, Canadell JG, Dlugokencky EJ, Etiope G, Bastviken D, Houweling S, Janssens-Maenhout G, Tubiello FN, Castaldi S, Jackson RB, Alexe M, Arora VK, Beerling DJ, Bergamaschi P, Blake DR, Brailsford G, Brovkin V, Bruhwiler L, Crevoisier C, Crill P, Covey K, Curry C, Frankenberg C, Gedney N, Hoglund-Isaksson L, Ishizawa M, Ito A, Joos F, Kim HS, Kleinen T, Krummel P, Lamarque JF, Langenfelds R, Locatelli R, Machida T, Maksyutov S, McDonald KC, Marshall J, Melton JR, Morino I, Naik V, O'Doherty S, Parmentier FJW, Patra PK, Peng CH, Peng SS, Peters GP, Pison I, Prigent C, Prinn R, Ramonet M, Riley WJ, Saito M, Santini M, Schroeder R, Simpson IJ, Spahni R, Steele P, Takizawa A, Thornton BF, Tian HQ, Tohjima Y, Viovy N, Voulgarakis A, van Weele M, van der Werf GR, Weiss R, Wiedinmyer C, Wilton DJ, Wiltshire A, Worthy D, Wunch D, Xu XY, Yoshida Y, Zhang B, Zhang Z, Zhu Q (2016) The global methane budget 2000–2012. Earth Syst Sci Data 8(2):697–751.  https://doi.org/10.5194/essd-8-697-2016 CrossRefGoogle Scholar
  161. Sawatdeenarunat C, Surendra KC, Takara D, Oechsner H, Khanal SK (2015) Anaerobic digestion of lignocellulosic biomass: challenges and opportunities. Bioresour Technol 178:178–186.  https://doi.org/10.1016/j.biortech.2014.09.103 CrossRefPubMedGoogle Scholar
  162. Scharf ME, Tartar A (2008) Termite digestomes as sources for novel lignocellulases. Biofuels Bioprod Biorefin 2(6):540–552.  https://doi.org/10.1002/bbb.107 CrossRefGoogle Scholar
  163. Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol R 61(2):262–280Google Scholar
  164. Schnürer A, Zellner G, Svensson BH (1999) Mesophilic syntrophic acetate oxidation during methane formation in biogas reactors. FEMS Microbiol Ecol 29(3):249–261CrossRefGoogle Scholar
  165. Shah RK, Patel AK, Davla DM, Parikh IK, Subramanian RB, Patel KC, Jakhesara SJ, Joshi CG (2017) Molecular cloning, heterologous expression, and functional characterization of a cellulolytic enzyme (Cel PRII) from buffalo rumen metagenome. 3 Biotech 7(4):257.  https://doi.org/10.1007/s13205-017-0895-2 CrossRefPubMedPubMedCentralGoogle Scholar
  166. Shapira M (2016) Gut microbiotas and host evolution: scaling up symbiosis. Trends Ecol Evol 31(7):539–549.  https://doi.org/10.1016/j.tree.2016.03.006 CrossRefPubMedPubMedCentralGoogle Scholar
  167. Shi Y, Huang Z, Han S, Fan S, Yang H (2015) Phylogenetic diversity of Archaea in the intestinal tract of termites from different lineages. J Basic Microbiol 55(8):1021–1028.  https://doi.org/10.1002/jobm.201400678 CrossRefPubMedPubMedCentralGoogle Scholar
  168. Silva GGD, Couturier M, Berrin JG, Buleon A, Rouau X (2012) Effects of grinding processes on enzymatic degradation of wheat straw. Bioresour Technol 103(1):192–200PubMedCrossRefPubMedCentralGoogle Scholar
  169. Singh KM, Reddy B, Patel D, Patel AK, Parmar N, Patel A, Patel JB, Joshi CG (2014) High potential source for biomass degradation enzyme discovery and environmental aspects revealed through metagenomics of Indian buffalo rumen. Biomed Res Int.  https://doi.org/10.1155/2014/267189 Google Scholar
  170. Siriwongrungson V, Zeny RJ, Angelidaki I (2007) Homoacetogenesis as the alternative pathway for H2 sink during thermophilic anaerobic degradation of butyrate under suppressed methanogenesis. Water Res 41(18):4204–4210.  https://doi.org/10.1016/j.watres.2007.05.037 CrossRefPubMedPubMedCentralGoogle Scholar
  171. Söllinger A, Tveit AT, Poulsen M, Noel SJ, Bengtsson M, Bernhardt J, Hellwing ALF, Lund P, Riedel K, Schleper C, Hojberg O, Urich T (2018) Holistic assessment of rumen microbiome dynamics through quantitative metatranscriptomics reveals multifunctional redundancy during key steps of anaerobic feed degradation. Msystems 3(4):e00038–e00018.  https://doi.org/10.1128/mSystems.00038-18 CrossRefPubMedPubMedCentralGoogle Scholar
  172. Stewart RD, Auffret MD, Warr A, Wiser AH, Press MO, Langford KW, Liachko I, Snelling TJ, Dewhurst RJ, Walker AW, Roehe R, Watson M (2018) Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen. Nat Commun 9:870.  https://doi.org/10.1038/s41467-018-03317-6 CrossRefPubMedPubMedCentralGoogle Scholar
  173. Sträuber H, Bühligen F, Kleinsteuber S, Nikolausz M, Porsch K (2015) Improved anaerobic fermentation of wheat straw by alkaline pre-treatment and addition of alkali-tolerant microorganisms. Bioengineering 2(2):66–93.  https://doi.org/10.3390/bioengineering2020066 CrossRefPubMedPubMedCentralGoogle Scholar
  174. Svartström O, Alneberg J, Terrapon N, Lombard V, de Bruijn I, Malmsten J, Dalin AM, El Muller E, Shah P, Wilmes P, Henrissat B, Aspeborg H, Andersson AF (2017) Ninety-nine de novo assembled genomes from the moose (Alces alces) rumen microbiome provide new insights into microbial plant biomass degradation. ISME J 11(11):2538–2551PubMedPubMedCentralCrossRefGoogle Scholar
  175. Tale VP, Maki JS, Struble CA, Zitomer DH (2011) Methanogen community structure-activity relationship and bioaugmentation of overloaded anaerobic digesters. Water Res 45(16):5249–5256PubMedCrossRefPubMedCentralGoogle Scholar
  176. Tartar A, Wheeler MM, Zhou X, Coy MR, Boucias DG, Scharf ME (2009) Parallel metatranscriptome analyses of host and symbiont gene expression in the gut of the termite Reticulitermes flavipes. Biotechnol Biofuels 2:25.  https://doi.org/10.1186/1754-6834-2-25 CrossRefPubMedPubMedCentralGoogle Scholar
  177. Tholen A, Brune A (1999) Localization and in situ activities of homoacetogenic bacteria in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.). Appl Environ Microbiol 65(10):4497–4505PubMedPubMedCentralGoogle Scholar
  178. Tholen A, Brune A (2000) Impact of oxygen on metabolic fluxes and in situ rates of reductive acetogenesis in the hindgut of the wood-feeding termite Reticulitermes flavipes. Environ Microbiol 2(4):436–449PubMedCrossRefPubMedCentralGoogle Scholar
  179. Tsapekos P, Kougias PG, Vasileiou SA, Treu L, Campanaro S, Lyberatos G, Angelidaki I (2017) Bioaugmentation with hydrolytic microbes to improve the anaerobic biodegradability of lignocellulosic agricultural residues. Bioresour Technol 234:350–359PubMedCrossRefPubMedCentralGoogle Scholar
  180. Urban C, Xu JJ, Sträuber H, Dantas TRD, Muhlenberg J, Hartig C, Angenent LT, Harnisch F (2017) Production of drop-in fuels from biomass at high selectivity by combined microbial and electrochemical conversion. Energy Environ Sci 10(10):2231–2244.  https://doi.org/10.1039/c7ee01303e CrossRefGoogle Scholar
  181. Vervaeren H, Hostyn K, Ghekiere G, Willems B (2010) Biological ensilage additives as pretreatment for maize to increase the biogas production. Renew Energy 35(9):2089–2093CrossRefGoogle Scholar
  182. Vincent JFV, Bogatyreva OA, Bogatyrev NR, Bowyer A, Pahl AK (2006) Biomimetics: its practice and theory. J R Soc Interface 3(9):471–482.  https://doi.org/10.1098/rsif.2006.0127 CrossRefPubMedPubMedCentralGoogle Scholar
  183. Wahid R, Mulat DG, Gaby JC, Horn SJ (2019) Effects of H2:CO2 ratio and H2 supply fluctuation on methane content and microbial community composition during in-situ biological biogas upgrading. Biotechnol Biofuels 12:ARTN 104.  https://doi.org/10.1186/s13068-019-1443-6
  184. Wall DM, Straccialini B, Allen E, Nolan P, Herrmann C, O'Kiely P, Murphy JD (2015) Investigation of effect of particle size and rumen fluid addition on specific methane yields of high lignocellulose grass silage. Bioresour Technol 192:266–271PubMedCrossRefPubMedCentralGoogle Scholar
  185. Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N, Sorek R, Tringe SG, Podar M, Martin HG, Kunin V, Dalevi D, Madejska J, Kirton E, Platt D, Szeto E, Salamov A, Barry K, Mikhailova N, Kyrpides NC, Matson EG, Ottesen EA, Zhang X, Hernandez M, Murillo C, Acosta LG, Rigoutsos I, Tamayo G, Green BD, Chang C, Rubin EM, Mathur EJ, Robertson DE, Hugenholtz P, Leadbetter JR (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450(7169):560–569.  https://doi.org/10.1038/nature06269 CrossRefPubMedPubMedCentralGoogle Scholar
  186. Watanabe H, Tokuda G (2010) Cellulolytic systems in insects. Annu Rev Entomol 55:609–632.  https://doi.org/10.1146/annurev-ento-112408-085319 CrossRefPubMedPubMedCentralGoogle Scholar
  187. Wei SZ (2016) The application of biotechnology on the enhancing of biogas production from lignocellulosic waste. Appl Microbiol Biotechnol 100(23):9821–9836.  https://doi.org/10.1007/s00253-016-7926-5 CrossRefPubMedPubMedCentralGoogle Scholar
  188. Weimer PJ, Stevenson DM, Mantovani HC, Man SLC (2010) Host specificity of the ruminal bacterial community in the dairy cow following near-total exchange of ruminal contents. J Dairy Sci 93(12):5902–5912.  https://doi.org/10.3168/jds.2010-3500 CrossRefPubMedPubMedCentralGoogle Scholar
  189. Weiss S, Zankel A, Lebuhn M, Petrak S, Somitsch W, Guebitz GM (2011) Investigation of mircroorganisms colonising activated zeolites during anaerobic biogas production from grass silage. Bioresour Technol 102(6):4353–4359PubMedCrossRefPubMedCentralGoogle Scholar
  190. Welch JG (1982) Rumination, particle-size and passage from the rumen. J Anim Sci 54(4):885–894CrossRefGoogle Scholar
  191. Westerholm M, Dolfing J, Schnurer A (2019) Growth characteristics and thermodynamics of syntrophic acetate oxidizers. Environ Sci Technol 53(9):5512–5520.  https://doi.org/10.1021/acs.est.9b00288 CrossRefPubMedPubMedCentralGoogle Scholar
  192. Westerholm M, Moestedt J, Schnurer A (2016) Biogas production through syntrophic acetate oxidation and deliberate operating strategies for improved digester performance. Appl Energy 179:124–135.  https://doi.org/10.1016/j.apenergy.2016.06.061 CrossRefGoogle Scholar
  193. Willis JD, Mazarei M, Stewart CN (2016) Transgenic plant-produced hydrolytic enzymes and the potential of insect gut-derived hydrolases for biofuels. Front Plant Sci 7:Article 675.  https://doi.org/10.3389/fpls.2016.00675
  194. Yan L, Gao YM, Wang YJ, Liu Q, Sun ZY, Fu BR, Wen X, Cui ZJ, Wang WD (2012) Diversity of a mesophilic lignocellulolytic microbial consortium which is useful for enhancement of biogas production. Bioresour Technol 111:49–54PubMedCrossRefPubMedCentralGoogle Scholar
  195. Yanez-Ruiz DR, Abecia L, Newbold CJ (2015) Manipulating rumen microbiome and fermentation through interventions during early life: a review. Front Microbiol 6:ARTN 1133.  https://doi.org/10.3389/fmicb.2015.01133
  196. Zabranska J, Pokorna D (2018) Bioconversion of carbon dioxide to methane using hydrogen and hydrogenotrophic methanogens. Biotechnol Adv 36(3):707–720.  https://doi.org/10.1016/j.biotechadv.2017.12.003 CrossRefPubMedPubMedCentralGoogle Scholar
  197. Zened A, Combes S, Cauquil L, Mariette J, Klopp C, Bouchez O, Troegeler-Meynadier A, Enjalbert F (2013) Microbial ecology of the rumen evaluated by 454 GS FLX pyrosequencing is affected by starch and oil supplementation of diets. FEMS Microbiol Ecol 83(2):504–514PubMedCrossRefPubMedCentralGoogle Scholar
  198. Zhang J, Guo RB, Qiu YL, Qiao JT, Yuan XZ, Shi XS, Wang CS (2015) Bioaugmentation with an acetate-type fermentation bacterium Acetobacteroides hydrogenigenes improves methane production from corn straw. Bioresour Technol 179:306–313PubMedCrossRefPubMedCentralGoogle Scholar
  199. Zheng MX, Li XJ, Li LQ, Yang XJ, He YF (2009) Enhancing anaerobic biogasification of corn stover through wet state NaOH pretreatment. Bioresour Technol 100(21):5140–5145PubMedCrossRefPubMedCentralGoogle Scholar
  200. Zhong WZ, Zhang ZZ, Luo YJ, Sun SS, Qiao W, Xiao M (2011) Effect of biological pretreatments in enhancing corn straw biogas production. Bioresour Technol 102(24):11177–11182PubMedCrossRefPubMedCentralGoogle Scholar
  201. Ziganshin AM, Schmidt T, Scholwin F, Il'inskaya ON, Harms H, Kleinsteuber S (2011) Bacteria and archaea involved in anaerobic digestion of distillers grains with solubles. Appl Microbiol Biotechnol 89(6):2039–2052.  https://doi.org/10.1007/s00253-010-2981-9 CrossRefPubMedPubMedCentralGoogle Scholar
  202. Ziganshin AM, Ziganshina EE, Kleinsteuber S, Nikolausz M (2016) Comparative analysis of methanogenic communities in different laboratory-scale anaerobic digesters. Archaea.  https://doi.org/10.1155/2016/3401272 CrossRefGoogle Scholar
  203. Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32(5):723–735.  https://doi.org/10.1111/j.1574-6976.2008.00123.x CrossRefGoogle Scholar
  204. Ziolecki A, Briggs CAE (1961) Microflora of rumen of young calf: II. Source, nature and development. J Appl Bacteriol 24(2):148–163.  https://doi.org/10.1111/j.1365-2672.1961.tb00247.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Aquatic SciencesIstanbul UniversityIstanbulTurkey
  2. 2.Department of Environmental MicrobiologyHelmholtz Centre for Environmental Research—UFZLeipzigGermany

Personalised recommendations