Advertisement

BabA and LPS inhibitors against Helicobacter pylori: pectins and pectin-like rhamnogalacturonans as adhesion blockers

  • Maren Gottesmann
  • Vasiliki Paraskevopoulou
  • Aymen Mohammed
  • Franco H. Falcone
  • Andreas HenselEmail author
Applied microbial and cell physiology

Abstract

The first step in the development of Helicobacter pylori pathogenicity is receptor-mediated adhesion to gastric epithelium. Adhesins of H. pylori not only enable colonisation of the epithelium, with BabA interacting with Lewisb, but also interaction of lipopolysaccharide (LPS) with galectin-3 contributes to attachment of H. pylori to the host cells. Anti-adhesive compounds against H. pylori have been described, but specific analytical assays for pinpointing the interaction with BabA are limited. LPS-galectin-3 inhibitors have not been described until now. A sandwich ELISA with recombinant BabA547-6K was developed to investigate the interaction of BabA with Lewisb-HSA. Isothermal titration calorimetry gave thermodynamic information on the interaction between BabA, Lewisb-HSA and anti-adhesive compounds. A highly esterified rhamnogalacturonan from Abelmoschus esculentus inhibited the adhesion of H. pylori to adherent gastric adenocarcinoma (AGS) cells (IC50 550 μg/mL) and interacted with BabA (IC50 17 μg/mL). Pectins with similar rhamnogalacturonan structure showed weak anti-adhesive activity. Highly branched rhamnogalacturonans with low uronic acid content and high degree of esterification are potent BabA inhibitors. BabA represents a promising target for the development of anti-adhesive drugs against H. pylori. The rhamnogalacturonan influenced also the binding affinity of H. pylori to recombinant galectin-3 in a concentration-dependent manner with an IC50 of 222 μg/mL. Similar effects were obtained with pectin from apple fruits, while pectins from other sources were inactive.

Keywords

Adhesion Helicobacter pylori BabA Lipopolysaccharide Okra Pectin Rhamnogalacturonan 

Notes

Acknowledgements

The authors would like to thank Geoffrey A. Holdgate (AstraZeneca) for his help with ITC experiments.

Funding information

MG was partially funded by a Boehringer Ingelheim Fonds travel grant (no special grant number available) and by the Apothekerstiftung Westfalen-Lippe (no special grant number available). VP and FHF were funded through EPSRC (Grant EP/L01646X) and AstraZeneca R&D as part of the CDT for Advanced Therapeutics and Nanomedicines.

Authors’ Contribution

MG performed experiments and made substantial contributions to acquisition, analysis and interpretation of data; VP performed ITC experiments and contributed to MS; AM supported with experiments; FHF was involved in experiments, revised and discussed the MS; AH designed the study and has been involved in drafting and revising the MS

Compliance with Ethical Standards

Ethical Approval

This article does not contain studies with human participants performed by any of the authors.

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

253_2019_10234_MOESM1_ESM.pdf (400 kb)
ESM 1 (PDF 400 kb)

References

  1. Andersson DI, Hughes D (2010) Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol 8:260–271PubMedCrossRefPubMedCentralGoogle Scholar
  2. Ansari S, Yamaoka Y (2017) Survival of Helicobacter pylori in gastric acidic territory. Helicobacter 22(4).  https://doi.org/10.1111/hel.12386
  3. Appelmelk BJ, Martino MC, Veenhof E, Monteiro MA, Maaskant JJ, Negrini R, Lindh F, Perry M, Del Giudice G, Vandenbroucke-Grauls CM (2000) Phase variation in H type I and Lewis a epitopes of Helicobacter pylori lipopolysaccharide. Infect Immun 68:5928–5932PubMedPubMedCentralCrossRefGoogle Scholar
  4. Appelmelk BJ, Simoons-Smit I, Negrini R, Moran AP, Aspinall GO, Forte JG, de Vries T, Quan H, Verboom T, Maaskant JJ, Ghiara P, Kuipers EJ, Bloemena E, Tadema TM, Townsend RR, Tyagarajan K, Crothers JM, Monteiro MA, Savio A, de Graaff J (1996) Potential role of molecular mimicry between Helicobacter pylori lipopolysaccharide and host Lewis blood group antigens in autoimmunity. Infect Immun 64:2031–2040PubMedPubMedCentralGoogle Scholar
  5. Aspholm M, Olfat FO, Nordén J, Sondén B, Lundberg C, Sjöström R, Altraja S, Odenbreit S, Haas R, Wadström T, Engstrand L, Semino-Mora C, Liu H, Dubois A, Teneberg S, Arnqvist A, Borén T (2006) SabA is the H. pylori hemagglutinin and is polymorphic in binding to sialylated glycans. PLoS Pathog 2:e110PubMedPubMedCentralCrossRefGoogle Scholar
  6. Athmann C, Zeng N, Kang T, Marcus EA, Scott DR, Rektorschek M, Buhmann A, Melchers K, Sachs G (2000) Local pH elevation mediated by the intrabacterial urease of Helicobacter pylori cocultured with gastric cells. Carbohydr Polym 106:339–347Google Scholar
  7. Barondes SH, Cooper DN, Gitt MA, Leffler H (1994) Galectins. Structure and function of a large family of animal lectins. J Biol Chem 269:20807–20810PubMedPubMedCentralGoogle Scholar
  8. Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Anal Biochem 54:484–489PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bravo D, Hoare A, Soto C, Valenzuela MA, Quest AF (2018) Helicobacter pylori in human health and disease: Mechanisms for local gastric and systemic effects. World J Gastroenterol 24:3071–3089PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bugaytsova JA, Björnham O, Chernov YA, Gideonsson P, Henriksson S, Mendez M, Sjöström R, Mahdavi J, Shevtsova A, Ilver D, Moonens K, Quintana-Hayashi MP, Moskalenko R, Aisenbrey C, Bylund G, Schmidt A, Åberg A, Brännström K, Königer V, Vikström S, Rakhimova L, Hofer A, Ögren J, Liu H, Goldman MD, Whitmire JM, Ådén J, Younson J, Kelly CG, Gilman RH, Chowdhury A, Mukhopadhyay AK, Nair GB, Papadakos KS, Martinez-Gonzalez B, Sgouras DN, Engstrand L, Unemo M, Danielsson D, Suerbaum S, Oscarson S, Morozova-Roche LA, Olofsson A, Gröbner G, Holgersson J, Esberg A, Strömberg N, Landström M, Eldridge AM, Chromy BA, Hansen LM, Solnick JV, Lindén SK, Haas R, Dubois A, Merrell DS, Schedin S, Remaut H, Arnqvist A, Berg DE, Borén T (2017) Helicobacter pylori adapts to chronic infection and gastric disease via pH-responsive BabA-mediated adherence. Cell Host Microbe 21:376–389PubMedPubMedCentralCrossRefGoogle Scholar
  11. Das A, Pereira V, Saxena S, Ghosh TS, Anbumani D, Bag S, Das B, Nair GB, Abraham P, Mande SS (2017) Gastric microbiome of Indian patients with Helicobacter pylori infection, and their interaction networks. Sci Rep 7:15438PubMedPubMedCentralCrossRefGoogle Scholar
  12. Flores-Treviño S, Mendoza-Olazarán S, Bocanegra-Ibarias P, Maldonado-Garza HJ, Garza-González E (2018) Helicobacter pylori drug resistance: therapy changes and challenges. Expert Rev Gastroenterol Hepatol 12:819–827PubMedCrossRefPubMedCentralGoogle Scholar
  13. Fowler M, Thomas RJ, Atherton J, Roberts IS, High NJ (2006) Galectin-3 binds to Helicobacter pylori O-antigen: it is upregulated and rapidly secreted by gastric epithelial cells in response to H. pylori adhesion. Cell Microbiol 8:44–54PubMedCrossRefPubMedCentralGoogle Scholar
  14. Freire E (2004) Isothermal titration calorimetry: controlling binding forces in lead optimization. Drug Discov Today Technol 1:295–299PubMedCrossRefPubMedCentralGoogle Scholar
  15. Hage N, Howard T, Phillips C, Brassington C, Overman R, Debreczeni J, Gellert P, Stolnik S, Winkler GS, Falcone FH (2015a) Structural basis of Lewis(b) antigen binding by the Helicobacter pylori adhesin BabA. Sci Adv 1:e1500315PubMedPubMedCentralCrossRefGoogle Scholar
  16. Hage N, Renshaw JG, Winkler GS, Gellert P, Stolnik S, Falcone FH (2015b) Improved expression and purification of the Helicobacter pylori adhesin BabA through the incorporation of a hexa-lysine tag. Protein Expr Purif 106:25–30PubMedCrossRefPubMedCentralGoogle Scholar
  17. Hensel A, Deters AM, Müller G, Stark T, Wittschier N, Hofmann T (2007) Occurrence of N-phenylpropenoyl-L-amino acid amides in different herbal drugs and their influence on human keratinocytes, on human liver cells and on adhesion of Helicobacter pylori to the human stomach. Planta Med 73:142–150PubMedCrossRefPubMedCentralGoogle Scholar
  18. Herrmann A, König S, Lechtenberg M, Sehlbach M, Vakhrushev SY, Peter-Katalinic J, Hensel A (2012) Proteoglycans from Boswellia serrata Roxb. and B. carteri Birdw. and identification of a proteolytic plant basic secretory protein. Glycobiology 22:1424–1439PubMedCrossRefPubMedCentralGoogle Scholar
  19. Hu Y, Wan J-H, Li X-Y, Zhu Y, Graham DY, Lu N-H (2017) Systematic review with meta-analysis: the global recurrence rate of Helicobacter pylori. Aliment Pharmacol Ther 46:773–779PubMedCrossRefPubMedCentralGoogle Scholar
  20. Huang Y, Wang Q-L, Cheng D-D, Xu W-T, Lu N-H (2016) Adhesion and invasion of gastric mucosa epithelial cells by Helicobacter pylori. Front Cell Infect Microbiol 6:159PubMedPubMedCentralGoogle Scholar
  21. Ilver D, Arnqvist A, Ogren J, Frick IM, Kersulyte D, Incecik ET, Berg DE, Covacci A, Engstrand L, Borén T (1998) Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science 279:373–377PubMedCrossRefPubMedCentralGoogle Scholar
  22. Ishijima N, Suzuki M, Ashida H, Ichikawa Y, Kanegae Y, Saito I, Borén T, Haas R, Sasakawa C, Mimuro H (2011) BabA-mediated adherence is a potentiator of the Helicobacter pylori type IV secretion system activity. J Biol Chem 286:25256–25264PubMedPubMedCentralCrossRefGoogle Scholar
  23. Kienesberger S, Cox LM, Livanos A, Zhang X-S, Chung J, Perez-Perez GI, Gorkiewicz G, Zechner EL, Blaser MJ (2016) Gastric Helicobacter pylori infection affects local and distant microbial populations and host responses. Cell Rep 14:1395–1407PubMedPubMedCentralCrossRefGoogle Scholar
  24. Lengsfeld C, Deters A, Faller G, Hensel A (2004) High molecular weight polysaccharides from black currant seeds inhibit adhesion of Helicobacter pylori to human gastric mucosa. Planta Med 70:620–626PubMedCrossRefPubMedCentralGoogle Scholar
  25. Lengsfeld C, Faller G, Hensel A (2007) Okra polysaccharides inhibit adhesion of Campylobacter jejuni to mucosa isolated from poultry in vitro but not in vivo. Anim Feed Sci Technol 135:113–125CrossRefGoogle Scholar
  26. Mahdavi J, Sondén B, Hurtig M, Olfat FO, Forsberg L, Roche N, Angstrom J, Larsson T, Teneberg S, Karlsson K-A, Altraja S, Wadström T, Kersulyte D, Berg DE, Dubois A, Petersson C, Magnusson K-E, Norberg T, Lindh F, Lundskog BB, Arnqvist A, Hammarström L, Borén T (2002) Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science 297:573–578PubMedPubMedCentralCrossRefGoogle Scholar
  27. Marcus EA, Sachs G, Wen Y, Feng J, Scott DR (2012) Role of the Helicobacter pylori sensor kinase ArsS in protein trafficking and acid acclimation. J Bacteriol 194:5545–5551PubMedPubMedCentralCrossRefGoogle Scholar
  28. de Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D, Plummer M (2012) Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol 13:607–615PubMedCrossRefPubMedCentralGoogle Scholar
  29. Martínez LE, Hardcastle JM, Wang J, Pincus Z, Tsang J, Hoover TR, Bansil R, Salama NR (2016) Helicobacter pylori strains vary cell shape and flagellum number to maintain robust motility in viscous environments. Mol Microbiol 99:88–110PubMedCrossRefPubMedCentralGoogle Scholar
  30. Menchicchi B, Hensel A, Goycoolea FM (2015) Polysaccharides as bacterial antiadhesive agents and “smart” constituents for improved drug delivery systems against Helicobacter pylori infection. Curr Pharm Des 21:4888–4906PubMedCrossRefPubMedCentralGoogle Scholar
  31. Messing J, Niehues M, Shevtsova A, Borén T, Hensel A (2014a) Antiadhesive properties of arabinogalactan protein from Ribes nigrum seeds against bacterial adhesion of Helicobacter pylori. Molecules 19:3696–3717PubMedPubMedCentralCrossRefGoogle Scholar
  32. Messing J, Thöle C, Niehues M, Shevtsova A, Glocker E, Borén T, Hensel A (2014b) Antiadhesive properties of Abelmoschus esculentus (Okra) immature fruit extract against Helicobacter pylori adhesion. PLoS One 9:e84836PubMedPubMedCentralCrossRefGoogle Scholar
  33. Monsigny M, Petit C, Roche AC (1988) Colorimetric determination of neutral sugars by a resorcinol sulfuric acid micromethod. Anal Biochem 175:525–530PubMedCrossRefPubMedCentralGoogle Scholar
  34. Monteiro MA (2001) Helicobacter pylori: a wolf in sheep's clothing: the glycotype families of Helicobacter pylori lipopolysaccharides expressing histo-blood groups: structure, biosynthesis, and role in pathogenesis. Adv Carbohydr Chem Biochem 57:99–158PubMedCrossRefPubMedCentralGoogle Scholar
  35. Monteiro MA, Appelmelk BJ, Rasko DA, Moran AP, Hynes SO, MacLean LL, Chan KH, Michael FS, Logan SM, O'Rourke J, Lee A, Taylor DE, Perry MB (2000) Lipopolysaccharide structures of Helicobacter pylori genomic strains 26695 and J99, mouse model H. pylori Sydney strain, H. pylori P466 carrying sialyl Lewis X, and H. pylori UA915 expressing Lewis B classification of H. pylori lipopolysaccharides into glycotype families. Eur J Biochem 267:305–320PubMedCrossRefPubMedCentralGoogle Scholar
  36. Moonens K, Gideonsson P, Subedi S, Bugaytsova J, Romaõ E, Mendez M, Nordén J, Fallah M, Rakhimova L, Shevtsova A, Lahmann M, Castaldo G, Brännström K, Coppens F, Lo AW, Ny T, Solnick JV, Vandenbussche G, Oscarson S, Hammarström L, Arnqvist A, Berg DE, Muyldermans S, Borén T, Remaut H (2016) Structural insights into polymorphic ABO glycan binding by Helicobacter pylori. Cell Host Microbe 19:55–66PubMedPubMedCentralCrossRefGoogle Scholar
  37. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63PubMedCrossRefPubMedCentralGoogle Scholar
  38. Müller-Maatsch J, Caligiani A, Tedeschi T, Elst K, Sforza S (2014) Simple and validated quantitative 1H NMR method for the determination of methylation, acetylation, and feruloylation degree of pectin. J Agric Food Chem 62:9081–9087PubMedCrossRefPubMedCentralGoogle Scholar
  39. Mysore JV, Wigginton T, Simon PM, Zopf D, Heman-Ackah LM, Dubois A (1999) Treatment of Helicobacter pylori infection in rhesus monkeys using a novel antiadhesion compound. Gastroenterology 117:1316–1325PubMedCrossRefPubMedCentralGoogle Scholar
  40. Niehues M, Euler M, Georgi G, Mank M, Stahl B, Hensel A (2010) Peptides from Pisum sativum L. enzymatic protein digest with anti-adhesive activity against Helicobacter pylori: structure-activity and inhibitory activity against BabA, SabA, HpaA and a fibronectin-binding adhesin. Mol Nutr Food Res 54:1851–1861PubMedCrossRefPubMedCentralGoogle Scholar
  41. Odenbreit S (2005) Adherence properties of Helicobacter pylori: impact on pathogenesis and adaptation to the host. Int J Med Microbiol 295:317–324PubMedCrossRefPubMedCentralGoogle Scholar
  42. Parente F, Cucino C, Anderloni A, Grandinetti G, Porro GB (2003) Treatment of Helicobacter pylori infection using a novel antiadhesion compound (3'sialyllactose sodium salt). A double blind, placebo-controlled clinical study. Helicobacter 8:252–256PubMedCrossRefPubMedCentralGoogle Scholar
  43. Seetharaman J, Kanigsberg A, Slaaby R, Leffler H, Barondes SH, Rini JM (1998) X-ray crystal structure of the human galectin-3 carbohydrate recognition domain at 2.1-A resolution. J Biol Chem 273:13047–13052PubMedCrossRefPubMedCentralGoogle Scholar
  44. Sehlbach M, König S, Mormann M, Sendker J, Hensel A (2013) Arabinogalactan protein cluster from Jatropha curcas seed embryo contains fasciclin, xylogen and LysM proteins. Carbohydr Polym 98:522–531PubMedCrossRefPubMedCentralGoogle Scholar
  45. Shmuely H, Burger O, Neeman I, Yahav J, Samra Z, Niv Y, Sharon N, Weiss E, Athamna A, Tabak M, Ofek I (2004) Susceptibility of Helicobacter pylori isolates to the antiadhesion activity of a high-molecular-weight constituent of cranberry. Diagn Microbiol Infect Dis 50:231–235PubMedCrossRefPubMedCentralGoogle Scholar
  46. Thöle C, Brandt S, Ahmed N, Hensel A (2015) Acetylated rhamnogalacturonans from immature fruits of Abelmoschus esculentus inhibit the adhesion of Helicobacter pylori to human gastric cells by interaction with outer membrane proteins. Molecules 20:16770–16787PubMedPubMedCentralCrossRefGoogle Scholar
  47. Vale PF, McNally L, Doeschl-Wilson A, King KC, Popat R, Domingo-Sananes MR, Allen JE, Soares MP, Kümmerli R (2016) Beyond killing: Can we find new ways to manage infection? Evol Med Public Health 2016:148–157PubMedPubMedCentralCrossRefGoogle Scholar
  48. Van de Bovenkamp, Jeroen HB, Mahdavi J, Korteland-Van Male AM, Büller HA, Einerhand AWC, Borén T, Dekker J (2003) The MUC5AC glycoprotein is the primary receptor for Helicobacter pylori in the human stomach. Helicobacter 8:521–532PubMedCrossRefPubMedCentralGoogle Scholar
  49. Wittschier N, Faller G, Hensel A (2007) An extract of Pelargonium sidoides (EPs 7630) inhibits in situ adhesion of Helicobacter pylori to human stomach. Phytomedicine 14:285–288PubMedCrossRefPubMedCentralGoogle Scholar
  50. Wittschier N, Faller G, Hensel A (2009) Aqueous extracts and polysaccharides from liquorice roots (Glycyrrhiza glabra L.) inhibit adhesion of Helicobacter pylori to human gastric mucosa. J Ethnopharmacol 125:218PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Maren Gottesmann
    • 1
  • Vasiliki Paraskevopoulou
    • 2
  • Aymen Mohammed
    • 2
  • Franco H. Falcone
    • 2
  • Andreas Hensel
    • 1
    Email author
  1. 1.Institute of Pharmaceutical Biology and PhytochemistryUniversity of MünsterMünsterGermany
  2. 2.Institute for ParasitologyUniversity of GiessenGiessenGermany

Personalised recommendations