Applied Microbiology and Biotechnology

, Volume 104, Issue 3, pp 1331–1346 | Cite as

Population dynamics of methanogens and methanotrophs along the salinity gradient in Pearl River Estuary: implications for methane metabolism

  • Songze Chen
  • Peng WangEmail author
  • Haodong Liu
  • Wei Xie
  • Xianhui Sean Wan
  • Shuh-Ji Kao
  • Tommy J. Phelps
  • Chuanlun ZhangEmail author
Environmental biotechnology


Methane, a major greenhouse gas, plays an important role in global carbon cycling and climate change. Methanogenesis is identified as an important process for methane formation in estuarine sediments. However, the metabolism of methane in the water columns of estuaries is not well understood. The goal of this research was to examine the dynamics in abundance and community composition of methanogens and methanotrophs, and to examine whether and how they take part in methane metabolism in the water columns from the lower Pearl River (freshwater) to the coastal South China Sea (seawater). Quantitative PCR (qPCR) and high-throughput sequencing results showed that the abundance of methanogens decreased with increasing salinity, suggesting that growth of these methanogens in the Pearl River Estuary may be influenced by high salinity. Also, the methane concentration in surface waters was lower than that in near-bottom waters at most sites, suggesting sediment methanogens are a likely source of methane. In the estuarine mixing zone, significantly high methane concentrations existed with the presence of salt-tolerant methanogens (e.g., Methanomicrobiaceae, Methanocella, Methanosaeta and Methanobacterium) and methanotrophs (e.g., Methylocystis and Methylococcaceae), which were found in brackish habitats. Furthermore, a number of methanotrophic OTUs (from pmoA gene sequence data) had specific positive correlations with methanogenic OTUs (from mcrA gene sequence data), and some of these methanogenic OTUs were correlated with concentrations of particulate organic carbon (POC). The results indicate that methanotrophs and methanogens may be intimately linked in methane metabolism attached with particles in estuarine waters.


Pearl River estuary Methanogens Methanotrophs mcrA gene pmoA gene 



We thank Fengfeng Zheng, Yufei Chen, Tingting Zhang, and Bu Xu for data analysis.

Funding information

This research was supported by the Ministry of Science and Technology Award (Nos. 2016YFA0601101 and 2018YFA0605800), the National Natural Science Foundation of China (Nos. 91,851,210, 41,530,105 and 41,776,134), the Key Project of Natural Science Foundation of Guangdong Province (No. 2018B030311016), the Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology (No. ZDSYS201802081843490), and the Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology (No. MGQNLM-TD201810).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2019_10221_MOESM1_ESM.pdf (3.6 mb)
ESM 1 (PDF 3639 kb)


  1. Abril G, Iversen N (2002) Methane dynamics in a shallow non-tidal estuary (Randers Fjord Denmark). Mar Ecol Prog Ser 230:171–181. CrossRefGoogle Scholar
  2. Angel R, Claus P, Conrad R (2011) Methanogenic Archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME J 6:847–862. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baani M, Liesack W (2008) Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp strain SC2. Proc Natl Acad Sci 105:10203–10208. CrossRefPubMedGoogle Scholar
  4. Bange HW, Bartell U, Rapsomanikis S, Andreae MO (1994) Methane in the Baltic and North Seas and a reassessment of the marine emissions of methane. Glob Biogeochem Cycles 8:465–480. CrossRefGoogle Scholar
  5. Bange HW, Dahlke S, Ramesh R, Meyer-Reil LA, Rapsomanikis S, Andreae M (1998) Seasonal study of methane and nitrous oxide in the coastal waters of the southern Baltic Sea. Estuarine Coast Shelf Sci 47:807–817. CrossRefGoogle Scholar
  6. Bastviken D, Cole J, Pace M, Tranvik L (2004) Methane emissions from lakes dependence of lake characteristics two regional assessments and a global estimate. Glob Biogeochem Cycles 18:1–12. CrossRefGoogle Scholar
  7. Bogard MJ, del Giorgio PA, Boutet L, Chaves MCG, Prairie YT, Merante A, Derry AM (2014) Oxic water column methanogenesis as a major component of aquatic CH4 fluxes. Nat Commun 5:5350. CrossRefPubMedGoogle Scholar
  8. Borges AV, Champenois W, Gypens N, Delille B, Harlay J (2016) Massive marine methane emissions from near-shore shallow coastal areas. Sci Rep 6:27908. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bowman JP (2016) Methylococcaceae In: Bergey’s Man Syst Archaea Bact, pp 1–8.
  10. Bräuer SL, Cadillo-Quiroz H, Ward RJ, Yavitt JB, Zinder SH (2011) Methanoregula boonei gen nov, sp nov, an acidiphilic methanogen isolated from an acidic peat bog. Int J Syst Evol Microbiol 61:45–52. CrossRefPubMedGoogle Scholar
  11. Cai W, Dai M, Wang Y, Zhai W, Huang T, Chen S, Zhang F, Chen Z, Wang Z (2004) The biogeochemistry of inorganic carbon and nutrients in the Pearl River estuary and the adjacent northern South China Sea. Cont Shelf Res 24:1301–1319. CrossRefGoogle Scholar
  12. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chaudhary PP, Brablcova L, Buriankova I, Rulik M (2013) Molecular diversity and tools for deciphering the methanogen community structure and diversity in freshwater sediments. Appl Microbiol Biotechnol 97:7553–7562. CrossRefPubMedGoogle Scholar
  14. Chen C, Tseng H (2006) Abnormally high CH4 concentrations in seawater at mid-depths on the continental slopes of the northern South China Sea. Terr Atmos Ocean Sci 17:951–959. CrossRefGoogle Scholar
  15. Chen C, Wang S, Lu X, Zhang S, Lui H, Tseng H, Wang B, Huang H (2008) Hydrogeochemistry and greenhouse gases of the Pearl River its estuary and beyond. Quat Int 186:79–90. CrossRefGoogle Scholar
  16. Chen J, Wang F, Jiang L, Yin X, Xiao X (2013) Stratified communities of active Archaea in shallow sediments of the Pearl River estuary southern China. Curr Microbiol 67:41–50. CrossRefPubMedGoogle Scholar
  17. Chen J, Jiang X, Gu J (2015) Existence of novel phylotypes of nitrite-dependent anaerobic methane-oxidizing Bacteria in surface and subsurface sediments of the South China Sea. Geomicrobiol J 32:1–10. CrossRefGoogle Scholar
  18. Ciulla R, Clougherty C, Belay N, Krishnan S, Zhou C, Byrd D, Roberts MF (1994) Halotolerance of Methanobacterium thermoautotrophicum delta H and Marburg. J Bacteriol 176:3177–3187. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Costello and Lidstrom (1999) Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Appl Environ Microbiol 65:5066–5074Google Scholar
  20. Crump BC, Baross JA (2000) Archaeaplankton in the Columbia River its estuary and the adjacent coastal ocean USA. FEMS Microbiol Ecol 31:231–239. CrossRefPubMedGoogle Scholar
  21. Dang H, Jiao N (2014) Perspectives on the microbial carbon pump with special reference to microbial respiration and ecosystem efficiency in large estuarine systems. Biogeosciences 11:3887–3898. CrossRefGoogle Scholar
  22. Dedysh SN, Belova SE, Bodelier PLE, Smirnova KV, Khmelenina VN, Chidthaisong A, Trotsenko YA, Liesack W, Dunfield PF (2007) Methylocystis heyeri sp nov, a novel type II methanotrophic bacterium possessing “signature” fatty acids of type I methanotrophs. Int J Syst Evol Microbiol 57:472–479. CrossRefPubMedGoogle Scholar
  23. Dixon P (2003) VEGAN a package of R functions for community ecology. J Veg Sci 14:927–930. CrossRefGoogle Scholar
  24. Dridi B, Henry M, El Khéchine A, Raoult D, Drancourt M (2009) High prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae detected in the human gut using an improved DNA detection protocol. PLoS One 4:1–6. CrossRefGoogle Scholar
  25. Dridi B, Fardeau ML, Ollivier B, Raoult D, Drancourt M (2012) Methanomassiliicoccus luminyensis gen nov, sp nov, a methanogenic archaeon isolated from human faeces. Int J Syst Evol Microbiol 62:1902–1907. CrossRefPubMedGoogle Scholar
  26. Edgar RC (2013) UPARSE highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. CrossRefPubMedGoogle Scholar
  27. Enzmann F, Mayer F, Rother M, Holtmann D (2018) Methanogens biochemical background and biotechnological applications. AMB Express 8:1. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ, Golding SD, Tyson GW (2015) Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350:434–438. CrossRefPubMedGoogle Scholar
  29. Grossart HP, Frindte K, Dziallas C, Eckert W, Tang K (2011) Microbial methane production in oxygenated water column of an oligotrophic lake. Proc Natl Acad Sci 108:19657–19661. CrossRefPubMedGoogle Scholar
  30. Guo X, Dai M, Zhai W, Cai W, Chen B (2009) CO2 flux and seasonal variability in a large subtropical estuarine system the Pearl River estuary China. J Geophys Res.
  31. Hallam SJ, Girguis PR, Preston CM, Richardson PM, DeLong EF (2003) Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing Archaea. Appl Environ Microbiol 69:5483–5491. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471PubMedPubMedCentralGoogle Scholar
  33. Hao D, Tashiro T, Kato M, Sohrin R, Ishibashi T, Katsuyama C, Nagaosa K, Kimura H, Thanh TD, Kato K (2010) Population dynamics of Crenarchaeota and Euryarchaeota in the mixing front of river and marine waters. Microbes Environ 25:126. CrossRefGoogle Scholar
  34. Harley JF, Carvalho L, Dudley B, Heal KV, Rees RM, Skiba U (2015) Spatial and seasonal fluxes of the greenhouse gases N2O, CO2 and CH4 in a UK macrotidal estuary. Estuar Coast Shelf Sci 153:62–73. CrossRefGoogle Scholar
  35. Hayden CJ, Beman JM (2015) Microbial diversity and community structure along a lake elevation gradient in Yosemite National Park California USA. Environ Microbiol 18:1782–1791. CrossRefPubMedGoogle Scholar
  36. Holmes AJ, Costello A, Lidstrom ME, Murrell JC (1995) Evidence that participate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol Lett 132:203–208. CrossRefPubMedGoogle Scholar
  37. Hu A, Hou L, Yu C (2015) Biogeography of planktonic and benthic archaeal communities in a subtropical eutrophic estuary of China. Microb Ecol 70:322–335. CrossRefPubMedGoogle Scholar
  38. Hu A, Wang H, Li J, Liu J, Chen N, Yu C (2016) Archaeal community in a human-disturbed watershed in southeast China diversity distribution and responses to environmental changes. Appl Microbiol Biotechnol 100:4685–4698. CrossRefPubMedGoogle Scholar
  39. Huser BA, Wuhrmann K, Zehnder AJB (1982) Methanothrix soehngenii gen nov sp nov, a new acetotrophic non-hydrogen-oxidizing methane bacterium. Arch Microbiol 132:1–9. CrossRefGoogle Scholar
  40. Iino T, Tamaki H, Tamazawa S, Ueno Y, Ohkuma M, Suzuki K, Igarashi Y, Haruta S (2013) Candidatus Methanogranum caenicola a novel methanogen from the anaerobic digested sludge and proposal of Methanomassiliicoccaceae fa M nov and Methanomassiliicoccales ord nov, for a methanogenic lineage of the class Thermoplasmata. Microbes Environ 28:244–250. CrossRefPubMedPubMedCentralGoogle Scholar
  41. IPCC, (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2013). Cambridge University Press. Google Scholar
  42. Jiang B, Parshina SDW, Lomans BP, Stams AJ (2005) Methanomethylovorans thermophila sp nov, a thermophilic methylotrophic methanogen from an anaerobic reactor fed with methanol. Int J Syst Evol Microbiol 55:2465–2470. CrossRefPubMedGoogle Scholar
  43. Jiang L, Peng X, Zhou H, Wang F (2008) Vertical distribution and diversity of Archaea in coastal sediments of Qi’ao Island (Zhujiang River Estuary) southern China estimated by 16S rDNA analysis. Acta Oceanol Sin 30:114–122Google Scholar
  44. Jiang H, Chen Y, Jiang P, Zhang C, Smith TJ, Murrell JC, Xing X (2010) Methanotrophs multifunctional Bacteria with promising applications in environmental bioengineering. Compr Biotechnol Second Ed 49:277–288. CrossRefGoogle Scholar
  45. Jiang L, Zheng Y, Chen J, Xiao X, Wang F (2011) Stratification of archaeal communities in shallow sediments of the Pearl River Estuary Southern China. Antonie van Leeuwenhoek Int J Gen Mol Microbiol 99:739–751. CrossRefGoogle Scholar
  46. Jin T, Zhang T, Ye L, Lee O, Wong Y, Qian P (2011) Diversity and quantity of ammonia-oxidizing Archaea and Bacteria in sediment of the Pearl River Estuary China. Appl Microbiol Biotechnol 90:1137–1145. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Joshi A, Lanjekar V, Dhakephalkar PK, Dagar SS (2018) Cultivation of multiple genera of hydrogenotrophic methanogens from different environmental niches. Anaerobe 50:64–68. CrossRefPubMedGoogle Scholar
  48. Joye SB, Macdonald IR, Leifer I, Asper V (2011) Magnitude and oxidation potential of hydrocarbon gases released from the BP oil well blowout. Nat Geosci 4:160–164. CrossRefGoogle Scholar
  49. Kao S, Yang J, Liu K, Dai M, Chou W, Lin H, Ren H (2012) Isotope constraints on particulate nitrogen source and dynamics in the upper water column of the oligotrophic South China Sea. Glob Biogeochem Cycles 26:GB2033. CrossRefGoogle Scholar
  50. Knief C (2015) Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front Microbiol.
  51. Knief C, Dunfield PF (2005) Response and adaptation of different methanotrophic Bacteria to low methane mixing ratios. Environ Microbiol 7:1307–1317. CrossRefPubMedGoogle Scholar
  52. Kolb S, Knief C, Stubner S, Conrad R (2003) Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Appl Environ Microbiol 69:2423–2429. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Kumar S, Stecher G, Tamura K (2016) MEGA7 molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. CrossRefGoogle Scholar
  54. Lazar CS, Baker BJ, Seitz K, Hyde AS, Dick GJ, Hinrichs KU, Teske AP (2016) Genomic evidence for distinct carbon substrate preferences and ecological niches of Bathyarchaeota in estuarine sediments. Environ Microbiol 18:1200–1211. CrossRefPubMedGoogle Scholar
  55. Lee JH, Kumar S, Lee GH, Chang D, Rhee MS, Yoon MH, Kim BC (2013) Methanobrevibacter boviskoreani sp nov., isolated from the rumen of Korean native cattle. Int J Syst Evol Microbiol 63:4196–4201. CrossRefPubMedGoogle Scholar
  56. Lin H, Dai M, Kao S, Wang L, Roberts E, Yang J, Huang T, He B (2016) Spatiotemporal variability of nitrous oxide in a large eutrophic estuarine system: The Pearl River Estuary. China Mar Chem 182:14-24. CrossRefGoogle Scholar
  57. Liu Y, Boone DR (1991) Effects of salinity on methanogenic decomposition. Bioresour Technol 35:271–273. CrossRefGoogle Scholar
  58. Liu Y, Whitman WB (2008) Metabolic phylogenetic and ecological diversity of the methanogenic Archaea. Ann N Y Acad Sci 1125:171–189. CrossRefPubMedGoogle Scholar
  59. Liu J, Yu S, Zhao M, He B, Zhang X (2014) Shifts in archaeaplankton community structure along ecological gradients of Pearl Estuary. FEMS Microbiol Ecol 90:424–435. CrossRefPubMedGoogle Scholar
  60. Liu J, Fu B, Yang H, Zhao M, He B, Zhang X (2015) Phylogenetic shifts of bacterioplankton community composition along the Pearl Estuary the potential impact of hypoxia and nutrients. Front Microbiol.
  61. Lomans BP, Maas R, Luderer R, Op den Camp HJ, Pol A, van der Drift C, Vogels GD.l (1999) Isolation and characterization of Methanomethylovorans hollandica gen nov, sp nov, isolated from freshwater sediment a methylotrophic methanogen able to grow on dimethyl sulfide and methanethiol. Appl Environ Microbiol 65: 3641–3650. doi: CrossRefGoogle Scholar
  62. Lueders T, Chin KJ, Conrad R, Friedrich M (2001) Molecular analyses of methyl-coenzyme M reductase α-subunit (mcrA) genes in rice field soil and enrichment cultures reveal the methanogenic phenotype of a novel archaeal lineage. Environ Microbiol 3:194–204. CrossRefPubMedGoogle Scholar
  63. Luesken FA, Zhu B, van Alen TA, Butler MK, Diaz MR, Song B, Op den Camp HJ, Jetten MS, Ettwig KF (2011) pmoA primers for detection of anaerobic methanotrophs. Appl Env Microbiol 77:3877–3880. CrossRefGoogle Scholar
  64. Luton PE, Wayne JM, Sharp RJ, Riley PW (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148:3521–3530. CrossRefGoogle Scholar
  65. Lyu Z, Shao N, Akinyemi T, Whitman WB (2018) Methanogenesis. Curr Biol 28:R727–R732. CrossRefPubMedGoogle Scholar
  66. Mcdonald IR, Murrell JC (1997) The particulate methane monooxygenase gene pmoA and its use as a functional gene probe for methanotrophs. FEMS Microbiol Lett 156:205–210. CrossRefGoogle Scholar
  67. Mckay LJ, Hatzenpichler R, Inskeep WP, Fields MW (2017) Occurrence and expression of novel methyl-coenzyme M reductase gene (mcrA) variants in hot spring sediments. Sci Rep 7:7252. CrossRefPubMedPubMedCentralGoogle Scholar
  68. Mori K, Harayama S (2011) Methanobacterium petrolearium sp nov and Methanobacterium ferruginis sp nov, mesophilic methanogens isolated from salty environments. Int J Syst Evol Microbiol 61:138. CrossRefPubMedGoogle Scholar
  69. Mori K, Iino T, Suzuki K, Yamaguchi K, Kamagata Y (2012) Aceticlastic and NaCl-requiring methanogen "Methanosaeta pelagica" sp nov, isolated from marine tidal flat sediment. Appl Environ Microbiol 78:3416–3423. CrossRefPubMedPubMedCentralGoogle Scholar
  70. Nadkarni MA, Martin FE, Jacques NA, Hunter N (2002) Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiol 148:257–266. CrossRefGoogle Scholar
  71. Nobu MK, Narihiro T, Kuroda K, Mei R, Liu WT (2016) Chasing the elusive Euryarchaeota class WSA2 genomes reveal a uniquely fastidious methyl-reducing methanogen. ISME J 10:2478–2487. CrossRefPubMedPubMedCentralGoogle Scholar
  72. Park D, Lee J (2013) Biological conversion of methane to methanol. Korean J Chem Eng 30:977–987. CrossRefGoogle Scholar
  73. Pattnaik P, Mishra SR, Bharati K, Mohanty SR, Sethunathan N, Adhya TK (2000) Influence of salinity on methanogenesis and associated microflora in tropical rice soils. Microbiol Res 155:215–220. CrossRefPubMedGoogle Scholar
  74. Paul BG, Ding H, Bagby SC, Kellermann MY, Redmond MC, Andersen GL, Valentine DL (2017) Methane-oxidizing Bacteria shunt carbon to microbial mats at a marine hydrocarbon seep. Front Microbiol 8:1–13. CrossRefGoogle Scholar
  75. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project improved data processing and web-based tools. Nucleic Acids Res 41:590–596. CrossRefGoogle Scholar
  76. Rakowski CV, Magen C, Bosman S, Rogers L, Gillies LE, Chanton JP, Mason OU (2015) Methane and microbial dynamics in the Gulf of Mexico water column. Front Mar Sci.
  77. Raskin L, Poulsen LK, Noguera DR, Rittmann BE, Stahl DA (1994) Quantification of methanogenic groups in anaerobic biological reactors by oligonucleotide probe hybridization. Appl Environ Microbiol 60:1241–1248. CrossRefPubMedPubMedCentralGoogle Scholar
  78. Rocío TAMD, José FF, Florina RV, Francisco VC (2013) Dynamics of the methanogenic Archaea in tropical estuarine sediments. Archaea 2013:582–646. CrossRefGoogle Scholar
  79. Roey A, Diethart M, Ralf C (2011) Activation of methanogenesis in arid biological soil crusts despite the presence of oxygen. PLoS One 6:e20453. CrossRefGoogle Scholar
  80. Roussel EG, Sauvadet AL, Allard J, Chaduteau C, Richard P, Bonavita MAC, Chaumillon E (2009) Archaeal methane cycling communities associated with gassy subsurface sediments of Marennes-Oléron Bay (France). Geomicrobiol J 26:31–43. CrossRefGoogle Scholar
  81. Sakai S, Imachi H (2016) Methanocellales. In: Bergey’s Man Syst Archaea Bact, pp 1–1
  82. Samad MS, Bertilsson S (2017) Seasonal variation in abundance and diversity of bacterial methanotrophs in five temperate lakes. Front Microbiol:8–142.
  83. Sawicka JE, Brüchert V (2017) Annual variability and regulation of methane and sulfate fluxes in Baltic Sea estuarine sediments. Biogeosciences 14:325–339. CrossRefGoogle Scholar
  84. Scheller S, Goenrich M, Boecher R, Thauer RK, Jaun B (2010) The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature 465:606–608. CrossRefPubMedGoogle Scholar
  85. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur open-source platform-independent community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. CrossRefPubMedPubMedCentralGoogle Scholar
  86. Schmitt S, Conroy JL, Flynn TM, Sanford RA, Higley MC, Chen M, Fouke B (2019) Salinity, microbe and carbonate mineral relationships in brackish and hypersaline lake sediments: A case study from the tropical Pacific coral atoll of Kiritimati. Depos Rec 5(2):212–29. CrossRefGoogle Scholar
  87. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. CrossRefPubMedPubMedCentralGoogle Scholar
  88. She C, Zhang Z, Cadillo-Quiroz H, Tong C (2016) Factors regulating community composition of methanogens and sulfate-reducing Bacteria in brackish marsh sediments in the Min River estuary southeastern China. Estuar Coast Shelf Sci 181:27–38. CrossRefGoogle Scholar
  89. Shlimon AG, Friedrich MW, Niemann H, Ramsing NB, Finster K (2004) Methanobacterium aarhusense sp nov, a novel methanogen isolated from a marine sediment (Aarhus Bay Denmark). Int J Syst Evol Microbiol 54:759–763. CrossRefPubMedGoogle Scholar
  90. Smith KS, Ingram-Smith C (2007) Methanosaeta the forgotten methanogen? Trends Microbiol 15:150–155. CrossRefPubMedGoogle Scholar
  91. Smith MW, Allen LZ, Allen AE, Herfort L, Simon HM (2013) Contrasting genomic properties of free-living and particle-attached microbial assemblages within a coastal ecosystem. Front Microbiol 4:1–20. CrossRefGoogle Scholar
  92. Sowers KR, Gunsalus RP (1988) Adaptation for growth at various saline concentrations by the archaebacterium Methanosarcina thermophila. J Bacteriol 170:998–1002. CrossRefPubMedPubMedCentralGoogle Scholar
  93. Stahl D (1991) Development and application of nucleic acid probes. Nucleic Acid Tech Bact Syst. CrossRefGoogle Scholar
  94. Sun Z, Wang L, Tian H, Jiang H, Mou X, Sun W (2013) Fluxes of nitrous oxide and methane in different coastal Suaeda salsa marshes of the Yellow River Estuary China. Chemosphere 90:856–865. CrossRefPubMedGoogle Scholar
  95. Takai KEN, Horikoshi K (2000) Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl Environ Microbiol 66:5066–5072. CrossRefPubMedPubMedCentralGoogle Scholar
  96. Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic Archaea ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591. CrossRefPubMedGoogle Scholar
  97. Theisen AR, Murrell JC (2005) Facultative methanotrophs revisited. J Bacteriol 187:4303–4305. CrossRefPubMedPubMedCentralGoogle Scholar
  98. Tong C, Cadillo-Quiroz H, Zeng Z, She C, Yang P, Huang J (2017) Changes of community structure and abundance of methanogens in soils along a freshwater-brackish water gradient in subtropical estuarine marshes. Geoderma 299:101–110. CrossRefGoogle Scholar
  99. Toumi J, Miladi B, Farhat A, Nouira S, Hamdi M, Gtari M, Bouallagui H (2015) Microbial ecology overview during anaerobic codigestion of dairy wastewater and cattle manure and use in agriculture of obtained bio-fertilisers. Bioresour Technol 198:141–149. CrossRefPubMedGoogle Scholar
  100. Wang S, Zhu G, Peng Y, Jetten MS, Yin C (2012) Anammox bacterial abundance activity and contribution in riparian sediments of the Pearl River estuary. Environ Sci Technol 46:8834–8842. CrossRefPubMedGoogle Scholar
  101. Wang L, Zhang J, Li H, Yang H, Peng C, Peng Z, Lu L (2018) Shift in the microbial community composition of surface water and sediment along an urban river. Sci Total Environ 627:600–612. CrossRefPubMedGoogle Scholar
  102. Webster G, O'Sullivan LA, Meng Y, Williams AS, Sass AM, Watkins AJ, Parkes RJ, Weightman AJ (2015) Archaeal community diversity and abundance changes along a natural salinity gradient in estuarine sediments. FEMS Microbiol Ecol 91:1–18. CrossRefPubMedGoogle Scholar
  103. Wen X, Yang S, Horn F, Winkel M, Wagner D, Liebner S (2017) Global biogeographic analysis of methanogenic Archaea identifies community-shaping environmental factors of natural environments. Front Microbiol 8:1339. CrossRefPubMedPubMedCentralGoogle Scholar
  104. Whitman WB, Bowen TL, Boone DR (2006) The Methanogenic bacteria. In: The prokaryotes (pp. 165–207). Springer, New York, NY. CrossRefGoogle Scholar
  105. Wilkins D, Lu XY, Shen Z, Chen J, Lee PKH (2015) Pyrosequencing of mcrA and archaeal 16s rRNA genes reveals diversity and substrate preferences of methanogen communities in anaerobic digesters. Appl Environ Microbiol 81:604–613. CrossRefPubMedPubMedCentralGoogle Scholar
  106. Xie W, Zhang C, Zhou X, Wang P (2014) Salinity-dominated change in community structure and ecological function of Archaea from the lower Pearl River to coastal South China Sea. Appl Microbiol Biotechnol 98:7971–7982. CrossRefPubMedGoogle Scholar
  107. Xie W, Luo H, Murugapiran SK, Dodsworth JA, Chen S, Sun Y, Hedlund BP, Wang P, Fang H, Deng M, Zhang CL (2017) Localized high abundance of Marine group II Archaea in the subtropical Pearl River Estuary implications for their niche adaptation. Environ Microbiol 20:734–754. CrossRefPubMedGoogle Scholar
  108. Yang S, Liebner S, Alawi M, Ebenhöh O, Wagner D (2014) Taxonomic database and cut-off value for processing mcrA gene 454 pyrosequencing data by MOTHUR. J Microbiol Methods 103:3–5. CrossRefPubMedPubMedCentralGoogle Scholar
  109. Yang S, Wen X, Liebner S (2016) pmoA gene reference database (fasta-formatted sequences and taxonomy). GFZ Data Services.
  110. Yu Y, Lee C, Kim J, Hwang S (2005) Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng 89:670–679. CrossRefPubMedGoogle Scholar
  111. Zeleke J, Sheng Q, Wang JG, Huang MY, Xia F, Wu JH, Quan ZX (2013) Effects of Spartina alterniflora invasion on the communities of methanogens and sulfate-reducing Bacteria in estuarine marsh sediments. Front Microbiol 4:243. CrossRefPubMedPubMedCentralGoogle Scholar
  112. Zhang Y, Jiao N, Cottrell MT, Kirchman DL (2006) Contribution of major bacterial groups to bacterial biomass production along a salinity gradient in the South China Sea. Aquat Microb Ecol 43: 233-241. doi: 1
  113. Zhang G, Zhang J, Liu S, Ren JL, Xu J, Zhang F (2008) Methane in the Changjiang (Yangtze River) Estuary and its adjacent marine area riverine input sediment release and atmospheric fluxes. Biogeochemistry 91:71–84. CrossRefGoogle Scholar
  114. Zhang T, Huang X, Yang Y, Li Y, Dahlgren RA (2016a) Spatial and temporal variability in nitrous oxide and methane emissions in urban riparian zones of the Pearl River Delta. Environ Sci Pollut Res 23:1552–1564. CrossRefGoogle Scholar
  115. Zhang Y, Xiao W, Jiao N (2016b) Linking biochemical properties of particles to particle-attached and free-living bacterial community structure along the particle density gradient from freshwater to open ocean. J Geophys Res Biogeosci 121:2261–2274. CrossRefGoogle Scholar
  116. Zhou H, Yin X, Yang Q, Wang H, Wu Z, Bao S (2009) Distribution source and flux of methane in the western Pearl River estuary and northern South China Sea. Cont Shelf Res 117:21–31. CrossRefGoogle Scholar
  117. Zhou Z, Chen J, Cao H, Han P, Gu J (2014) Comparison of communities of both methane-producing and metabolizing Archaea and Bacteria in sediments between the northern South China Sea and coastal Mai Po nature reserve revealed by PCR amplification of mcrA and pmoA genes. Front Microbiol 5:1–15. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Songze Chen
    • 1
  • Peng Wang
    • 1
    Email author
  • Haodong Liu
    • 2
  • Wei Xie
    • 3
  • Xianhui Sean Wan
    • 4
  • Shuh-Ji Kao
    • 4
  • Tommy J. Phelps
    • 2
  • Chuanlun Zhang
    • 2
    • 5
    Email author
  1. 1.State Key Laboratory of Marine GeologyTongji UniversityShanghaiPeople’s Republic of China
  2. 2.Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and EngineeringSouthern University of Science and TechnologyShenzhenPeople’s Republic of China
  3. 3.School of Marine ScienceSun Yat-sen UniversityZhuhaiPeople’s Republic of China
  4. 4.State Key Laboratory of Marine Environmental SciencesXiamen UniversityXiamenPeople’s Republic of China
  5. 5.Laboratory for Marine GeologyQingdao National Laboratory for Marine Science and TechnologyQingdaoPeople’s Republic of China

Personalised recommendations