Advertisement

Antimicrobial secondary metabolites from agriculturally important fungi as next biocontrol agents

  • Chetan Keswani
  • Harikesh B. Singh
  • Rosa Hermosa
  • Carlos García-Estrada
  • John Caradus
  • Ya-Wen He
  • Samia Mezaache-Aichour
  • Travis R. Glare
  • Rainer Borriss
  • Francesco Vinale
  • Estibaliz SansineneaEmail author
Mini-Review
  • 17 Downloads

Abstract

Synthetic chemical pesticides have been used for many years to increase the yield of agricultural crops. However, in the future, this approach is likely to be limited due to negative impacts on human health and the environment. Therefore, studies of the secondary metabolites produced by agriculturally important microorganisms have an important role in improving the quality of the crops entering the human food chain. In this review, we have compiled information about the most important secondary metabolites of fungal species currently used in agriculture pest and disease management.

Keywords

Antimicrobials Secondary metabolites Agriculture Pesticides 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Akello J, Dubois T, Gold CS, Coyne D, Nakavuma J, Paparu P (2007) Beauveria bassiana (Balsamo) Vuillemin as an endophyte in tissue culture banana (Musa spp.). J Invertebr Pathol. 96:34–42PubMedCrossRefPubMedCentralGoogle Scholar
  2. Al-Ani LKT (2019) Bioactive secondary metabolites of Trichoderma spp. for efficient management of phytopathogens. In: Singh HB, Keswani C, Reddy MS, Sansinenea E, Garcia-Estrada C (eds) Secondary metabolites of plant growth promoting. Springer Nature Singapore Pte, Ltd. Pp, pp 125–143CrossRefGoogle Scholar
  3. Alurappa R, Bojegowda MR, Kumar V, Mallesh NK, Chowdappa S (2014) Characterisation and bioactivity of oosporein produced by endophytic fungus Cochliobolus kusanoi isolated from Nerium oleander L. Nat Prod Res. 28:2217–2220PubMedCrossRefPubMedCentralGoogle Scholar
  4. Arjona-Girona I, Vinale F, Ruano-Rosa D, Lorito M, López-Herrera CJ (2014) Effect of metabolites from different Trichoderma strains on the growth of Rosellinia necatrix, the causal agent of avocado white root rot. Eur J Plant Pathol. 140:385–397CrossRefGoogle Scholar
  5. Bae SJ, Mohanta TK, Chung JY, Ryu M, Park G, Shim S, Hong SB, Seo H, Bae DW, Bae I, Kim JJ, Bae H (2016) Trichoderma metabolites as biological control agents against Phytophthora pathogens. Biol Control. 92:128–138CrossRefGoogle Scholar
  6. Ball JP, Miles CO, Prestidge RA (1997) Ergopeptine alkaloids and Neotyphodium lolii-mediated resistance in perennial ryegrass against adult Heteronychus arator. Entomological Society of America 97:1382–1391Google Scholar
  7. Belesky DP, West CP (2009) Abiotic stresses and endophyte effects. In: Fribourg HA, Hannaway DB, West CP. (eds.) Tall fescue for the twenty-first century. Agronomy. Monograph No. 53. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. Madison, WI, pp 129–149Google Scholar
  8. Bisen K, Keswani C, Mishra S, Saxena A, Rakshit A, Singh HB (2015) Unrealized potential of seed biopriming for versatile agriculture. In: Rakshit A, Singh HB, Sen A (eds) Nutrient use efficiency: from basics to advances. Springer, New Delhi, pp 193–206CrossRefGoogle Scholar
  9. Blakemore PR, Schulze VK, White JD (2000) Asymmetric synthesis of (+)-loline. Chem Commun. 2000:1263–1264CrossRefGoogle Scholar
  10. Blankenship JD, Houseknecht JB, Pal S, Bush LP, Grossman RB, Schardl CL (2005) Biosynthetic precursors of fungal pyrrolizidines, the loline alkaloids. Chem biochem. 6:1016–1022Google Scholar
  11. Borriss R (2011) Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Germany, pp 41–76CrossRefGoogle Scholar
  12. Brito JPC, Ramada MHS, de Magalhaes MTQ, Silva LP, Uhloa CJ (2014) Peptaibols from Trichoderma asperellum TR356 strain isolated from Brazilian soil. Springer Plus 3(1-10):600PubMedCrossRefPubMedCentralGoogle Scholar
  13. Brown TP, Fletcher OJ, Osuna O, Wyatt RD (1987) Microscopic and ultrastructural renal pathology of oosporein-induced toxicosis in broiler chicks. Avian Dis. 31:868–877PubMedCrossRefPubMedCentralGoogle Scholar
  14. Cai F, Yu G, Wang P, Wei Z, Fu L, Shen Q, Chen W (2013) Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum. Plant physiol Biochem. 73:106–113PubMedCrossRefPubMedCentralGoogle Scholar
  15. Cakmak M, Mayer P, Trauner D (2011) An efficient synthesis of loline alkaloids. Nature Chemistry. 3:543–545PubMedCrossRefPubMedCentralGoogle Scholar
  16. Calo L, Fornelli F, Ramires R, Nenna S, Tursi A, Caiaffa MF, Macchia L (2004) Cytotoxic effects of the mycotoxin beauvericin to human cell lines of myeloid origin. Pharmacol Res. 49:73–77PubMedCrossRefPubMedCentralGoogle Scholar
  17. Card S, Johnson L, Teasdale S, Caradus J (2016) Deciphering endophyte behaviour – the link between endophyte biology and efficacious biological control agents. FEMS Microbiology Ecology 92:fiw114PubMedCrossRefPubMedCentralGoogle Scholar
  18. Cardoza RE, Malmierca MG, Hermosa MR, Alexander NJ, McCormick SP, Proctor RH, Tijerino AM, Rumbero A, Monte E, Gutierrez S (2011) Identification of loci and functional characterization of trichothecene biosynthesis genes in filamentous fungi of the genus Trichoderma. Appl Environ Microbiol. 77:4867–4877PubMedPubMedCentralCrossRefGoogle Scholar
  19. Charnley AK (2003) Fungal pathogens of insects: cuticle-degrading enzymes and toxins. Adv Bot Res. 40:241–321CrossRefGoogle Scholar
  20. Cherry AJ, Lomer CJ, Djegui D, Schulthess F (1999) Pathogen incidence and their potential as microbial control agents in IPM of maize stem borers in West Africa. BioControl. 44:301–327CrossRefGoogle Scholar
  21. Cherry AJ, Banito A, Djegui D, Lorner C (2004) Suppression of the stem-borer Sesamia calamistis (Lepidoptera; Noctuidae) in maize following seed dressing, topical application and stem injection with African isolates of Beauveria bassiana. Int J Pest Manage. 50:67–73CrossRefGoogle Scholar
  22. Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. The American Naturalist. 160:S99–S127PubMedCrossRefPubMedCentralGoogle Scholar
  23. Covarelli L, Beccari G, Prodi A, Generotti S, Etruschi F, Meca G, Juan C, Mañes J (2015) Biosynthesis of beauvericin and enniatins in vitro by wheat Fusarium species and natural grain contamination in an area of central Italy. Food Microbiol. 46:618–626PubMedCrossRefPubMedCentralGoogle Scholar
  24. Degenkolg T, Aghcheh RK, Dieckmann R, Neuhof T, Baker SE, Druzhinina IS, Kubicek CP, Brückner H, von Döhren H (2012) The production of multiple small peptaibol families by single 14-module peptide synthetases in Trichoderma/Hypocrea. Chem Biodiversity 9:499–535CrossRefGoogle Scholar
  25. Degenkolb T, von Döhren H, Nielsen KF, Samuels GJ, Brückner H (2008) Recent advances and future prospects in peptaibiotics, hydrophobin, and mycotoxin research, and their importance for chemotaxonomy of Trichoderma and Hypocrea. Chem Biodiversity. 5:671–680CrossRefGoogle Scholar
  26. Demain AL, Fang A (2000) The natural functions of secondary metabolites. In: Scheper T (ed) Advances in biochemical engineering/biotechnology, vol 69. Springer, Berlin, pp 1–39Google Scholar
  27. Easton HS, Latch GCM, Tapper BA, Ball OJP (2002) Ryegrass host genetic control of concentrations of endophyte-derived alkaloids. Crop Science. 42:51–57PubMedCrossRefPubMedCentralGoogle Scholar
  28. Elbanhawy AA, Elsherbiny EA, El-Mageed AEA, Abdel-Fattah GM (2019) Potential of fungal metabolites as a biocontrol agent against cotton aphid. Aphis gossypii Glover and the possible mechanisms of action. Pesticide Biochemistry and Physiology. 159:34–40PubMedPubMedCentralGoogle Scholar
  29. Eley KL, Halo LM, Song Z, Powles H, Cox RJ, Bailey AM, Lazarus CM, Simpson TJ (2007) Biosynthesis of the 2-pyridone tenellin in the insect pathogenic fungus Beauveria bassiana. Chem biochem. 8:289–297Google Scholar
  30. Evidente A, Andolfi A, Cimmino A, Ganassi S, Altomare C, Favilla M, De Cristofaro A, Vitagliano S, Sabatini MA (2009) Bisorbicillinoids produced by the fungus Trichoderma citrinoviride affect feeding preference of the aphid Schizaphi sgraminum. J Chem Ecol. 35:533–541PubMedCrossRefGoogle Scholar
  31. Evidente A, Ricciardiello G, Andolfi A, Sabatini MA, Ganassi S, Altomare C, Favilla M, Melck D (2008) Citrantifidiene and citrantifidiol: bioactive metabolites produced by Trichoderma citrinoviride with potential antifeedant activity toward aphids. J Agric Food Chem. 56:3569–3573PubMedCrossRefGoogle Scholar
  32. Faeth SH, Saikkonen K (2007) Variability is the nature of the endophyte-grass interaction. Grassland Research and Practice Series. 13:37–48Google Scholar
  33. Feng P, Shang Y, Cen K, Wang C (2015) Fungal biosynthesis of the bibenzoquinone oosporein to evade insect immunity. Proc Natl Acad Sci USA. 112:11365–11370PubMedCrossRefGoogle Scholar
  34. Finch SC, Wilkins AL, Popay AJ, Babu JV, Tapper BA, Lane GA. 2010. The isolation and bioactivity of epoxy-janthitrems from AR37 endophyte-infected perennial ryegrass. [Poster 80]. Presented at the Proceedings of the 7th International Symposium on Fungal Endophytes of Grasses, Lexington, Kentucky, USA.Google Scholar
  35. Finking R, Marahiel MA (2004) Biosynthesis of nonribosomal peptides. Annu Rev Microbiol. 58:453–488PubMedCrossRefGoogle Scholar
  36. Fleetwood DJ, Scott B, Voisey CR, Johnson RD (2008) Insights into the molecular biology of Epichloë endophyte alkaloid biosynthesis. Proceedings of the New Zealand Grassland Association. 70:217–220Google Scholar
  37. Fletcher LR, Sutherland BL (2009) Sheep responses to grazing ryegrass with AR37 endophyte. Proceedings of the New Zealand Grassland Association. 71:127–132Google Scholar
  38. Fukuda T, Arai M, Yamaguchi Y, Masuma R, Tomoda H, Omura S (2004a) New beauvericins, potentiators of antifungal miconazole activity, produced by Beauveria sp. FKI-1366. I. Taxonomy, fermentation, isolation and biological properties. J Antibiot. (Tokyo) 57:110–116CrossRefGoogle Scholar
  39. Fukuda T, Arai M, Tomoda H, Omura S (2004b) New beauvericins, potentiators of antifungal miconazole activity produced by Beauveria sp FKI-1366. Structure elucidation. J Antibiot. (Tokio) 57:117–124CrossRefGoogle Scholar
  40. Gallagher RT, Prestidge RA (1990) Structure-activity studies on indole diterpenes, including lolitrems and related indoles and tremorgens. In: Joost RE (ed) Quisenberry SS. Baton Rouge, LA, pp 80–82Google Scholar
  41. Ganassi S, Moretti A, Stornelli I, Fratello B, Bonvicini-Pagliai AM, Logrieco A, Sabatini MA (2000) Effect of Fusarium, Paecilomyces and Trichoderma formulations against aphids Schizaphis graminum. Mycopathologia. 151:131–138CrossRefGoogle Scholar
  42. Garnica-Vergara A, Barrera-Ortiz S, Muñoz-Parra E, Raya-González J, Méndez-Bravo A, Macías-Rodríguez L, Ruiz-Herrera LF, López-Bucio J (2016) The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLEN INSENSITIVE 2 functioning. New Phytol. 209:1496–1512PubMedCrossRefGoogle Scholar
  43. Gibson DM, Donzelli BG, Krasnoff SB, Keyhani NO (2014) Discovering the secondary metabolite potential encoded within entomopathogenic fungi. Nat Prod Rep. 31:1287–1305PubMedCrossRefGoogle Scholar
  44. Glare TR, O’Callaghan M (2017) Microbial biopesticides for control of invertebrates: progress from New Zealand. J inverte pathol.  https://doi.org/10.1016/j.jip.2017.11.014 PubMedCrossRefGoogle Scholar
  45. Glare TR, Caradus J, Gelernter WD, Jackson TA, Keyhani NO, Köhl J, Marrone PG, Morin L, Stewart A (2012) Have biopesticides come of age? Trends Biotechnol. 30:250–258PubMedCrossRefGoogle Scholar
  46. Goettel MS, Eilenberg J, Glare T. 2010. Entomopathogenic fungi and their role in regulation of insect populations. In Insect control: biological and synthetic agents (Gilbert LI, Gill SS. eds), pp. 387-432, Academic Press.Google Scholar
  47. Halo LM, Heneghan MN, Yakasai AA, Song Z, Willians K, Bailey AM, Cox RJ, Lazarus CM, Simpson TJ (2008) Late stage oxidations during the biosynthesis of the 2-pyridone tenellin in the entomopathogenic fungus Beauveria bassiana. J Am Chem Soc. 130:17988–17996PubMedCrossRefGoogle Scholar
  48. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol. 2:43–56PubMedCrossRefGoogle Scholar
  49. Harman GE (2006) Overview of mechanisms and uses of Trichoderma spp. Phytopathology. 96:190–194PubMedCrossRefGoogle Scholar
  50. He G, Yan J, Wu XY, Gou XJ, Li WC (2012) Oosporein from Tremella fuciformis. Acta Crystallogr Sect E Struct Rep Online. 68:o1231PubMedPubMedCentralCrossRefGoogle Scholar
  51. Heneghan MN, Yakasai AA, Williams K, Kadir KA, Wasil Z, Bakeer W, Fisch KM, Bailey AM, Simpson TJ, Cox RJ, Lazarus CM (2011) The programming role of trans-acting enoyl reductases during the biosynthesis of highly reduced fungal polyketides. Chem Sci. 2:972–979CrossRefGoogle Scholar
  52. Hermosa R, Cardoza RE, Rubio MB, Gutiérrez S, Monte E. 2014. Secondary metabolism and antimicrobial metabolites of Trichoderma. (Gupta VS, Schmoll M, Herrera-Estrella A, Upadhyay RS, Druzhinina I, Tuohy M, eds.), pp. 125-137. Waltham, MA: Elsevier.Google Scholar
  53. Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology. 158:17–25PubMedCrossRefGoogle Scholar
  54. Jeffs LB, Khachatourians GG (1997) Toxic properties of Beauveria pigments on erythrocyte membranes. Toxicon. 35:1351–1356PubMedCrossRefGoogle Scholar
  55. Jegorov A, Sedmena P, Marťha V, Šimek P, Zahradničková H, Landa Z, Eyal J (1994) Beauverolides L and La from Beauveria tenella and Paecilomyces fumosoroseus. Phytochemistry. 37:1301–1303PubMedCrossRefGoogle Scholar
  56. Jelen H, Blaszczyk L, Chelkowshi J, Rogowicz K, Strakowska J (2014) Formation of 6-n-pentyl-2H-pyran-2-one (6-PP) and other volatiles by different Trichoderma species. Mycol Progress. 13:589–600CrossRefGoogle Scholar
  57. Jensen JG, Popay AJ. 2007. Reductions in root aphid population by non-toxic endophyte strains in tall fescue. In: Popay AJ, Thom ER. (ed.) Research and Practice New Zealand Grassland Association 13: 6th International Symposium on Fungal Endophytes of Grasses, pp 341-344.Google Scholar
  58. Jirakkakul J, Punya J, Pongpattanakitshote S, Paungmoung P, Vorapreeda N, Tachaleat A, Klomnara C, Tanticharoen M, Cheevadhanarak S (2008) Identification of the nonribosomal peptide synthetase gene responsible for bassianolide synthesis in wood-decaying fungus Xylaria sp. BCC1067. Microbiology. 154:995–1006PubMedCrossRefGoogle Scholar
  59. Jirakkakul J, Cheevadhanarak S, Punya J, Chutrakul C, Senachak J, Buajarern T, Tanticharoen M, Amnuaykanjanasin A (2015) Tenellin acts as an iron chelator to prevent iron-generated reactive oxygen species toxicity in the entomopathogenic fungus Beauveria bassiana. FEMS Microbiol Lett. 362:1–8PubMedCrossRefGoogle Scholar
  60. Johnson LJ, de Bonth ACM, Briggs L, Caradus JR, Finch DC, Fleetwood DJ, Fletcher LR, Hume DE, Johnson RD, Popay AJ, Tapper BA, Simpson WR, Voisey CR, Card SD (2013) The exploitation of epichloae endophytes for agricultural benefit. Fungal Diversity. 60:171–188CrossRefGoogle Scholar
  61. Johnson R, Voisey C, Johnson L, Pratt J, Fleetwood D, Khan A, Bryan G (2007) Distribution of NRPS gene families within the Neotyphodium/Epichloë complex. Fungal Genetics and Biology. 44:1180–1190PubMedCrossRefPubMedCentralGoogle Scholar
  62. Jow GM, Chou CJ, Chen BF, Tsai JH (2004) Beauvericin induces cytotoxic effects in human acute lymphoblastic leukemia cells through cytochrome c release, caspase 3 activation: the causative role of calcium. Cancer Lett. 216:165–173PubMedCrossRefGoogle Scholar
  63. Kagamizono T (1995) Bassiatin, a new platelet aggregation inhibitor produced by Beauveria bassiana K-717. J Antibiot (Tokyo). 48:1407–1412PubMedCrossRefGoogle Scholar
  64. Karlovsky P (2008) Secondary metabolites in soil ecology. In: Karlowsky P (ed) Soil biology, vol 14. Springer-Verlag, Berlin Heidelberg, pp 1–19Google Scholar
  65. Keswani C, Mishra S, Sarma BK, Singh SP, Sigh HB (2014) Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Appl Microbiol Biotechnol. 98:533–544PubMedCrossRefGoogle Scholar
  66. Kirkland BH, Eisa A, Keyhani NO (2005) Oxalic acid as a fungal acaracidal virulence factor. J Med Entomol. 42:346–351PubMedCrossRefGoogle Scholar
  67. Klotz JL (2015) Activities and effects of ergot alkaloids on livestock physiology and production. Toxins (Basel). 7:2801–2821PubMedPubMedCentralCrossRefGoogle Scholar
  68. Koulman A, Lane GA, Christensen MJ, Fraser K, Tapper BA (2007) Peramine and other fungal alkaloids are exuded in the guttation fluid of endophyte-infected grasses. Phytochemistry 68:355–360PubMedCrossRefGoogle Scholar
  69. Kouti K, Lemmens M, Lemmens-Gruber R (2003) Beauvericin induced channels in ventricular myocytes and liposomes. Biochim Biophys Acta. 1609:203–210CrossRefGoogle Scholar
  70. Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M, Zeilinger S, Casas-Flores S, Horwitz BA, Mukherjee PK, Mukherjee M, Kredics L, Alcaraz LD, Aerts A, Antal Z, Atanasova L, Cervantes-Badillo MG, Challacombe J, Chertkov O, McCluskey K, Coulpier F, Deshpande N, von Döhren H, Ebbole DJ, Esquivel-Naranjo EU, Fekete E, Flipphi M, Glaser F, Gómez-Rodríguez EY, Gruber S, Han C, Henrissat B, Hermosa R, Hernández-Oñate M, Karaffa L, Kosti I, Le Crom S, Lindquist E, Lucas S, Lübeck M, Lübeck PS, Margeot A, Metz B, Misra M, Nevalainen H, Omann M, Packer N, Perrone G, Uresti-Rivera EE, Salamov A, Schmoll M, Seiboth B, Shapiro H, Sukno S, Tamayo-Ramos JA, Tisch D, Wiest A, Wilkinson HH, Zhang M, Coutinho PM, Kenerley CM, Monte E, Baker SE, Grigoriev IV (2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol. 12:R40PubMedPubMedCentralCrossRefGoogle Scholar
  71. Kwon HC, Bang EJ, Choi SU, Lee WC, Cho SY, Jung IY, Kim SY, Lee KR (2000) Cytotoxic cyclodepsipeptides of Bombycis corpus 101A. Yakhak Hoeji. 44:115–118Google Scholar
  72. Lane GA, Christensen MJ, Miles CO (2000) Coevolution of fungal endophytes with grasses: the significance of secondary metabolites. In: Bacon CW, White JF (eds) Microbial Endophytes. Marcel Dekker, New York, pp 341–388Google Scholar
  73. Latch GCM (1993) Physiological interactions of endophytic fungi and their hosts. Biotic stress tolerance imparted to grasses by endophytes. Agriculture, Ecosystems & Environment. 44:143–156CrossRefGoogle Scholar
  74. Leelavathi MS, Vani L, Reena P (2014) Antimicrobial activity of Trichoderma harzianum against bacteria and fungi. Int J Curr Microbiol Appl Sci. 3:96–103Google Scholar
  75. Lehner SM, Atanasova L, Neumann NK, Krska R, Lemmens M, Druzhinina IS, Schuhmacher R (2013) Isotope-assisted screening for iron-containing metabolites reveals high diversity among known and unknown siderophores produced by Trichoderma spp. Appl Environ Microbiol. 79:18–31PubMedPubMedCentralCrossRefGoogle Scholar
  76. Leuchtmann A, Bacon CW, Schardl CL, White JF, Tadych M (2014) Nomenclatural realignment of Neotyphodium species with genus Epichloë. Mycologia. 106:202–215PubMedCrossRefPubMedCentralGoogle Scholar
  77. Li C, Zhang X, Li F, Nan Z, Schardl CL (2007a) Disease and pest resistance of endophyte infected and non-infected drunken horse grass. In: Popay A, Thom ER (eds) Proceedings of the 6th International Symposium on Fungal Endophytes of Grasses. Dunedin, New Zealand Grassland Association, pp 111–114Google Scholar
  78. Li HY, Luo Y, Zhang XZ, Shi WL, Gong ZT, Shi M, Chen LL, Chen XL, Zhang YZ, Song XY (2014) Trichokonins from Trichoderma pseudokoningii SMF2 induce resistance against Gram-negative Pectobacterium carotovorum subsp. carotovoroum in Chinese cabbage. FEMS Microbiol Lett. 354:75–82PubMedCrossRefPubMedCentralGoogle Scholar
  79. Li J, Beatty PK, Shah S, Jensen SE (2007b) Use of PCR-targeted mutagenesis to disrupt production of fusaricidin-type antifungal antibiotics in Paenibacillus polymyxa. Appl Environ Microbiol. 73:3480–3489PubMedPubMedCentralCrossRefGoogle Scholar
  80. Lin H-I, Lee Y-J, Chen B-F, Tsai M-C, Lu J-L, Chou C-J, Jow G-M (2005) Involvement of Bc1-2 family, cytochrome c and caspase 3 in induction of apotosis by beauvericin in human non-small cell lung cancer cells. Cancer Lett. 230:248–259PubMedCrossRefPubMedCentralGoogle Scholar
  81. Lorito M, Woo SL, Harman GE, Monte E (2010) Translational research on Trichoderma: from omics to the field. Annu Rev Phytopathol. 48:395–418PubMedCrossRefPubMedCentralGoogle Scholar
  82. Luo Y, Zhang DD, Dong XW, Zhao PB, Chen LL, Song XY, Chen XL, Shi M, Zhang YZ (2010) Antimicrobial peptaibols induce defense responses and systemic resistance in tobacco against tobacco mosaic virus. FEMS Microbiol Lett. 313:120–126PubMedCrossRefPubMedCentralGoogle Scholar
  83. Madariaga-Mazón A, González-Andradeb M, Toriello C, Navarro-Barranco H, Mata R (2015) Potent anti-calmodulin activity of cyclotetradepsipeptides isolated from Isaria fumosorosea using a newly designed biosensor. Nat Prod Commun. 10:113–116PubMedPubMedCentralGoogle Scholar
  84. Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Science. 40:923–940CrossRefGoogle Scholar
  85. Malinowski DP, Belesky DP, Lewis GC (2005) Abiotic stresses in endophytic grasses. In: Roberts CA, West CP, Spiers DE (eds) Neotyphodium in cool-season grasses. Blackwell, Ames, IA, pp 187–199CrossRefGoogle Scholar
  86. Malmierca MG, Barua J, McCormick SP, Izquierdo-Bueno I, Cardoza RE, Alexander NJ, Hermosa R, Collado IG, Monte E, Gutiérrez S (2015a) Novel aspinolide production by Trichoderma arundinaceum with a potential role in Botrytis cinerea antagonistic activity and plant defence priming. Environ Microbiol. 17:1103–1118PubMedCrossRefPubMedCentralGoogle Scholar
  87. Malmierca MG, Cardoza RE, Alexander NJ, McCormick SP, Collado IG, Hermosa R, Monte E, Gutiérrez S (2013) Relevance of trichothecenes in fungal physiology: disruption of tri5 in Trichoderma arundinaceum. Fungal Genet Biol. 53:22–33PubMedCrossRefPubMedCentralGoogle Scholar
  88. Malmierca MG, Cardoza RE, Alexander NJ, McCormick SP, Hermosa R, Monte E, Gutiérrez S (2012) Involvement of Trichoderma trichothecenes in the biocontrol activity and induction of plant defense-related genes. Appl Environ Microbiol. 78:4856–4868PubMedPubMedCentralCrossRefGoogle Scholar
  89. Malmierca MG, Izquierdo-Bueno I, McCormick SP, Cardoza RE, Alexander NJ, Moraga J, Gomes EV, Proctor RH, Collado IG, Monte E, Gutiérrez S (2016) Botrydial and botcinins produced by Botrytis cinerea regulate the expression of Trichoderma arundinaceumgenes involved in trichothecene biosynthesis. Mol Plant Pathol. 17:1017–1031PubMedPubMedCentralCrossRefGoogle Scholar
  90. Malmierca MG, McCormick SP, Cardoza RE, Alexander NJ, Monte E, Gutiérrez S (2015b) Production of trichodiene by Trichoderma harzianum alters the perception of this biocontrol strain by plants and antagonized fungi. Environ Microbiol. 17:2628–2646PubMedCrossRefPubMedCentralGoogle Scholar
  91. Malmierca MG, McCormick SP, Cardoza RE, Monte E, Alexander NJ, Gutiérrez S (2015c) Trichodiene production in a Trichoderma harzianum erg1-silenced strain provides evidence of the importance of the sterol biosynthetic pathway in inducing plant defense-related gene expression. Mol Plant Microbe Int. 28:1181–1197CrossRefGoogle Scholar
  92. Manning RO, Wyatt RD (1984) Comparative toxicity of Chaetomium contaminated corn and various chemical forms of oosporein in broiler chicks. Poultry Sci. 63:251–259CrossRefGoogle Scholar
  93. Mao BZ, Huang C, Yang GM, Chen YZ, Chen SY (2010) Separation and determination of the bioactivity of oosporein from Chaetomium cupreum. Afr J Biotechnol. 9:5955–5961Google Scholar
  94. Marfori EC, Kajiyama S, Fukusaki E, Kabayashi A (2002) Trichosetin, a novel tetramic acid antibiotic produced in dual culture of Trichoderma harzianum and Catharantus roseus callus. Z. Naturforsch. 57:465–470CrossRefGoogle Scholar
  95. Marfori EC, Kajiyama S, Fukusaki E, Kabayashi A (2003) Phytotoxicity of the tetramic acid metabolite trichosetin. Phytochem. 62:715–721CrossRefGoogle Scholar
  96. McInnes AG, Smith DG, Wat CK, Vining LC, Wright JLC (1974) Tenellin and bassianin, metabolites of Beauveria species. Structure elucidation with 15N- and doubly 13C-enriched compounds using 13C nuclear magnetic resonance spectroscopy. J Chem Soc Chem Commun. 1974:281–282CrossRefGoogle Scholar
  97. Meca G, Sospedra I, Soriano JM, Ritieni A, Moretti A, Mañes J (2010) Antibacterial effect of the bioactive compound beauvericin produced by Fusarium proliferatum on solid medium of wheat. Toxicon. 56:349–354PubMedCrossRefPubMedCentralGoogle Scholar
  98. Medeiros HA, Araújo Filho JV, Freitas LG, Castillo P, Rubio MB, Hermosa R, Monte E (2017) Tomato progeny inherit resistance to the nematode Meloidogyne javanica linked to plant growth induced by the biocontrol fungus Trichoderma atroviride. Sci Rep. 7:40216PubMedPubMedCentralCrossRefGoogle Scholar
  99. Mishra S, Singh A, Keswani C, Saxena A, Sarma BK, Singh HB (2015) Harnessing plant-microbe interactions for enhanced protection against phytopathogens. In: Arora NK (ed) Plant microbe symbiosis–applied facets. Springer, New Delhi, pp 111–125Google Scholar
  100. Mochizuki K, Ohmori K, Tamura H, Shizuri Y, Nishiyama S, Miyoshi E, Yamamura S (1993) The structures of bioactive cyclodepsipeptides, beauveriolide-I and beauveriolide-II, metabolites of entomopathogenic fungi Beauveria sp. Bull Chem Soc Jpn 66:3041–3046CrossRefGoogle Scholar
  101. Molnar I, Gibson DM, Krasnoff SB (2010) Secondary metabolites from entomopathogenic Hypocrealean fungi. Nat Prod Rep. 27:1241–1275PubMedCrossRefPubMedCentralGoogle Scholar
  102. Mukherjee PK, Buensanteai N, Morán-Diez ME, Druzhinina IS, Kenerley CM (2012) Functional analysis of non-ribosomal peptide synthetases (NRPSs) in Trichoderma virens reveals a polyketide synthase (PKS)/NRP hybrid enzyme involved in the induced systemic resistance response in maize. Microbiol. 158:155–165CrossRefGoogle Scholar
  103. Mukherjee PK, Horwitz BA, Herrera-Estrella A, Schmoll M, Kenerley CM (2013) Trichoderma research in the genome era. Annu Rev Phytopathol. 51:105–129PubMedCrossRefPubMedCentralGoogle Scholar
  104. Mukherjee PK, Kenerley CM (2010) Regulation of morphogenesis and biocontrol properties in Trichoderma virens by a VELVET protein, Vel1. Appl Environ Microbiol. 76:2345–2352PubMedPubMedCentralCrossRefGoogle Scholar
  105. Mukherjee PK, Wiest A, Ruiz N, Keightley A, Morán-Diez ME, McCluskey K, Pouchus YF, Kenerley CM (2011) Two classes of new peptaibols are synthesized by a single non-ribosomal peptide synthetase of Trichoderma virens. J BiolChem. 286:4544–4554Google Scholar
  106. Mutawila C, Vinale F, Halleen F, Lorito M, Mostert L (2016) Isolation, production and in vitro effects of the major secondary metabolite produced by Trichoderma species used for the control of grapevine trunk diseases. Plant Pathol. 65:104–115CrossRefGoogle Scholar
  107. Nakajyo S, Shimizu K, Kometani A, Suzuki A, Ozaki H, Urakawa N (1983) On the inhibitory mechanism of bassianolide, a cyclodepsipeptide, in acetylcholine-induced contraction in guinea-pig taenia coli. Jpn J Pharmacol. 33:573–582PubMedCrossRefPubMedCentralGoogle Scholar
  108. Nakazawa J, Yajima J, Usui T, Ueki M, Takatsuki A, Imoto M, Toyoshima YY, Osada H (2003) A novel action of terpendole E on the motor activity of mitotic kinesin Eg5. Chem Biol. 10:131–137PubMedCrossRefPubMedCentralGoogle Scholar
  109. Nagaoka T, Nakata K, Kouno K, Ando T (2004) Antifungal activity of oosporein from an antagonistic fungus against Phytophthora infestans. Z Naturforsch. 59:302–304CrossRefGoogle Scholar
  110. Namatame I, Tomoda H, Ishibashi S, Omura S (2010) Antiatherogenic activity of fungal beauveriolides, inhibitors of lipid droplet accumulation in macrophages. Proc Nal Acad Sci USA 101:737–742CrossRefGoogle Scholar
  111. Nilanonta C, Isaka M, Kittakoop P, Palittapongarnpim P, Kamchonwongpaisan S, Pittayakhajonwut D, Tanticharoen M, Thebtaranonth Y (2000) Antimycobacterial and antiplasmodial cyclodepsipeptides from the insect pathogenic fungus Paecilomyces tenuipes BCC1614. Planta Med. 66:756–758PubMedCrossRefPubMedCentralGoogle Scholar
  112. Oliver JW (1997) Physiological manifestations of endophyte toxicosis in ruminant and laboratory species. In: Bacon CW, Hill NS (eds) Neotyphodium/grass interactions. Proc. Third Int. Symp. Neotyphodium/Grass Interact. Plenum Press, New York, pp 311–346CrossRefGoogle Scholar
  113. Ortiz-Urquiza A, Riveiro-Miranda L, Santiago-Álvarez C, Quesada-Moraga E (2010) Insect-toxic secreted proteins and virulence of the entomopathogenic fungus Beauveria bassiana. J Invertebr Pathol. 105:270–278PubMedCrossRefPubMedCentralGoogle Scholar
  114. Ortiz-Urquiza A, Keyhani NO (2013) Action on the surface: entomopathogenic fungi versus the insect cuticle. Insects. 4:357–374PubMedPubMedCentralCrossRefGoogle Scholar
  115. Ortiz-Urquiza A, Luo Z, Keyhani NO (2015) Improving mycoinsecticides for insect biological control. Appl Microbiol Biotechnol. 99:1057–1068PubMedCrossRefPubMedCentralGoogle Scholar
  116. Ownley BH, Pereira RM, Klingeman WE, Quigley NB, Leckie BM. 2004. Beauveria bassiana, a dual purpose biocontrol organism, with activity against insect pests and plant pathogens. In Emerging concepts in plant health management (Lartey, R.T., Cesar A.J., eds), Research Signpost, pp. 255–269.Google Scholar
  117. Panaccione DG, Beaulieu WT, Cook D (2014) Bioactive alkaloids in vertically transmitted fungal endophytes. Functi Ecol. 28:299–314CrossRefGoogle Scholar
  118. Parker EJ, Scott DB (2005) Indole-diterpene biosynthesis in ascomycetous fungi. In “Handbook of industrial mycology” edit by Zhiqiang An. Mycology 22:405–426Google Scholar
  119. Patchett BJ, Gooneratne SR, Chapman RB (2011) Effects of loline-producing endophyte-infected meadow fescue ecotypes on New Zealand grass grub (Costelytra zealandica). New Zeal J Agr Res. 54:303–313CrossRefGoogle Scholar
  120. Paterson J, Forcherio C, Larson B, Samford M, Kerley M (1995) The effects of fescue toxicosis on beef cattle productivity. J Anim Sci. 73:889–898PubMedCrossRefPubMedCentralGoogle Scholar
  121. Pérez E, Rubio MB, Cardoza RE, Gutiérrez S, Bettiol W, Monte E, Hermosa R (2015) The importance of chorismate mutase in the biocontrol potential of Trichoderma parareesei. Front Microbiol. 6:1186CrossRefGoogle Scholar
  122. Popay AJ, Bonos SA. 2005. Biotic responses in endophytic grasses.In Neotyphodiumin cool-season grasses. Roberts CA, West CP, Spiers DE. Eds. Blackwell: Ames, IA. Pp. 163-185.Google Scholar
  123. Popay AJ, Cotching B, Moorhead A, Ferguson CM (2012) AR37 endophyte effects on porina and root aphid populations and ryegrass damage in the field. Pr N Z Grassl Assoc. 74:165–170Google Scholar
  124. Popay AJ, Tapper BA, Podmore C (2009) Endophyte-infected meadow fescue and loline alkaloids affect Argentine stem weevil larvae. N Z Plant Protect-Se. 62:19–27Google Scholar
  125. Porter JK, Thompson FN Jr (1992) Effects of fescue toxicosis on reproduction in livestock. J Anim Sci. 70:1594–1603PubMedCrossRefPubMedCentralGoogle Scholar
  126. Posada F, Aime MC, Peterson SW, Rehner SA, Vega FE (2007) Inoculation of coffee plants with the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales). Mycol Res. 111:749–758CrossRefGoogle Scholar
  127. Prestidge RA (1993) Causes and control of perennial ryegrass staggers in New Zealand. Agric Ecosystems Environ. 44:283–300CrossRefGoogle Scholar
  128. Prestidge RA, Barker GM, Pottinger RP (1991) The economic cost of Argentine stem weevil in pastures in New Zealand. P Nz Weed P. 44:165–170Google Scholar
  129. Prestidge RA, Pottinger RP, Barker GM (1982) An association of Lolium endophyte with ryegrass resistance to Argentine stem weevil. P Nz Weed P. 35:199–222Google Scholar
  130. Qi W, Zhao L (2013) Study of the siderophore-producing Trichoderma asperellum Q1 on cucumber growth promotion under salt stress. J Basic Microbiol. 53:355–364PubMedCrossRefPubMedCentralGoogle Scholar
  131. Quesada-Moraga E, Vey A (2004) Bassiacridin, a protein toxic for locusts secreted by the entomopathogenic fungus Beauveria bassiana. Mycol Res. 108:441–452PubMedCrossRefGoogle Scholar
  132. Quesada-Moraga E, Landa BB, Muñoz-Ledesma J, Jimenez-Diaz RM, Santiago-Alvarez C (2006) Endophytic colonisation of opium poppy, Papaver somniferum, by an entomopathogenic Beauveria bassiana strain. Mycopathol. 161:323–329CrossRefGoogle Scholar
  133. Ragavendran C, Kishore N, Natarajan D (2017) Beauveria bassiana (Clavicipitaceae): a potent fungal agent for controlling mosquito vectors of Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). RSC Adv. 7:3838–3851CrossRefGoogle Scholar
  134. Ramesha A, Venkataramana M, Nirmaladevi D, Gupta VK, Chandranayaka S, Srinivas C (2015) Cytotoxic effects of oosporein isolated from endophytic fungus Cochliobolus kusanoi. Front Microbiol. 6:870PubMedPubMedCentralCrossRefGoogle Scholar
  135. Reed KFM, Nie ZN, Walker LV, Mace WJ, Clark SG (2011) Weather and pasture characteristics associated with outbreaks of perennial ryegrass toxicosis in southern Australia. Anim Produc Sci. 51:738–752CrossRefGoogle Scholar
  136. Reino JL, Guerrero RF, Hernández-Galán R, Collado IG (2008) Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev. 7:89–123CrossRefGoogle Scholar
  137. Riedell WE, Kieckhefer RE, Petroski RJ, Powell RG (1991) Naturally occurring and synthetic loline alkaloid derivatives: insect feeding behaviour modification and toxicity. J Entom Sci. 26:122–129Google Scholar
  138. Robinson SL, Panaccione DG (2014) Heterologous expression of lysergic acid and novel ergot alkaloids in Aspergillus fumigatus. Appl Environ Microbiol. 80:6465–6472PubMedPubMedCentralCrossRefGoogle Scholar
  139. Röhrich CR, Iversen A, Jaklitsch WM, Volgmayr H, Vilcinskas A, Nielsen KF, Thrane U, von Döhren H, Brückner H, Degenkolb T (2013) Screening the biosphere: the fungicolous fungus Trichoderma phellinicola a prolific source of hypophellins, new 17-, 18-, 19-, and 20-residue peptaibiotics. Chem Biodiversity. 10:787–812CrossRefGoogle Scholar
  140. Rowan DD (1993) Lolitrems, peramine and paxilline: mycotoxins of the ryegrass/endophyte interaction. Agric Ecosystems Environ. 44:103–122CrossRefGoogle Scholar
  141. Rowan DD, Latch G (1994) Utilization of endophyte-infected perennial ryegrasses for increased insect resistance. Biotechnology of endophytic fungi of grasses, CRC Press, Boca Raton 12:169–183Google Scholar
  142. Rudgers JA, Clay K (2007) Community and ecosystem consequences of endophyte symbiosis with tall fescue. Grassland Research and Practice Series 13:19–35Google Scholar
  143. Rubio MB, Hermosa R, Vicente R, Gómez-Acosta A, Morcuende R, Monte E, Bettiol W (2017) The combination of Trichoderma harzianum and chemical fertilization leads to the deregulation of phytohormone networking, preventing the adaptive responses of tomato plants to salt stress. Front Plant Sci. 8:294PubMedPubMedCentralCrossRefGoogle Scholar
  144. Ruiz N, Roullier C, Petit K, Sallenave-Namot C, Grovel O, Pouchus YF. 2014. Marine-derived Trichoderma: a source of new bioactive metabolites. Trichoderma: biology and applications (Mukherjee PK, Horwitz BA, Singh US, Mukherjee M, Schmoll M, eds.), Wallingford, UK: CABI. pp. 247-279.Google Scholar
  145. Sabatini MA, Ganassi S, Altomare C, Favilla M, Evidente A, Andolfi A. 2014. Phagodeterrent compounds of fungal origin. Patent US 2014/0229448 A1.Google Scholar
  146. Saikia S, Nicholson MJ, Young C, Parker EJ, Scott B (2008) The genetic basis for indole-diterpene chemical diversity in filamentous fungi. Mycol Res 112:184–199PubMedCrossRefGoogle Scholar
  147. Saikkonen K, Young CA, Helander M, Schardl CL (2016) Endophytic Epichloë species and their grass hosts: from evolution to applications. Plant Mol Biol 90:665–675PubMedCrossRefGoogle Scholar
  148. Salwan R, Rialch N, Sharma V (2019) Bioactive volatile metabolites of Trichoderma: an overview. In: Singh HB, Keswani C, Reddy MS, Sansinenea E, Garcia-Estrada C (eds) Secondary metabolites of plant growth promoting. Springer Nature Singapore Pte, Ltd. Pp, pp 87–111CrossRefGoogle Scholar
  149. Schardl C (2015) Introduction to the toxins special issue on Ergot Alkaloids. Toxins 7(10):4232–4237PubMedPubMedCentralCrossRefGoogle Scholar
  150. Schardl CL, Clay K. 1997. Evolution of mutualistic endophytes from plant pathogens. The Mycota, Springer-Verlag Berlin Heidelberg 1997. 5.CrossRefGoogle Scholar
  151. Schardl CL, Florea S, Pan J, Nagabhyru P, Bec S, Patrick J, Calie PJ (2013a) The epichloae: alkaloid diversity and roles in symbiosis with grasses. Curr Opin Plant Biol. 16:480–488PubMedCrossRefGoogle Scholar
  152. Schardl CL, Grossman RB, Nagabhyru P, Faulkner JR, Mallik UP (2007) Loline alkaloids: currencies of mutualism. Phytochem. 68:980–996CrossRefGoogle Scholar
  153. Schardl CL, Young CA, Faulkner JA, Florea S, Pan J (2012) Chemotypic diversity of epichloae, fungal symbionts of grasses. Fungal Ecol. 5:331–344CrossRefGoogle Scholar
  154. Schardl CL, Young CA, Hesse U, Amyotte SG, Andreeva K, Calie PJ, Fleetwood DJ, Haws DC, Moore N, Oeser B, Panaccione DG, Schweri KK, Voisey CR, Farman ML, Jaromczyk JW, Roe BA, O’Sullivan DM, Scott B, Tudzynski P, An Z, Arnaoudova EG, Bullock CT, Charlton ND, Chen L, Cox M, Dinkins RD, Florea S, Glenn AE, Gordon A, ldener U, Harris DR, Hollin W, Jaromczyk J, Johnson RD, Khan AK, Leistner E, Leuchtmann A, Li C, Liu J, Liu J, Liu M, Mace W, Machado C, Nagabhyru P, Pan J, Schmid J, Sugawara K, Steiner U, Takach J, Tanaka E, Webb JS, Wilson EV, Wiseman JL, Yoshida R, Zeng Z (2013b) Plant symbiotic fungi as chemical engineers: multi-genome analysis of the Clavicipitaceae reveals dynamics of alkaloid loci. PLoS Genetics. 9:e1003323PubMedPubMedCentralCrossRefGoogle Scholar
  155. Schirmbock M, Lorito M, Wang YL, Hayes CK, Arisan-Atac I, Scala F, Harman GE, Kubicek CP (1994) Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi. Appl Environ Microbiol. 60:4364–4370PubMedPubMedCentralGoogle Scholar
  156. Schultze AE, Oliver JW (1999) Cytotoxicity of ergine to bovine endothelial cells in culture. The Toxicologist 48:298Google Scholar
  157. Seto Y, Takahashi K, Matsuura H, Kogami Y, Yada H, Yoshihara T, Nabeta K (2007) Novel cyclic peptide, epichlicin, from the endophytic fungus, Epichloë typhina. Biosci. Biotechnol. Biochem. 71:1470–1475PubMedCrossRefGoogle Scholar
  158. Shakeri J, Foster HA (2007) Proteolytic activity and antibiotic production by Trichoderma harzianum in relation to pathogenicity to insects. Enzyme Microb Tech. 40:961–968CrossRefGoogle Scholar
  159. Shi M, Chen L, Wang XW, Zhang T, Zhao PB, Song XY, Sun CY, Chen XL, Zhou BC, Zhang YZ (2012) Antimicrobial peptaibols from Trichoderma pseudokoningii induce programmed cell death in plant fungal pathogens. Microbiology. 158:166–175PubMedCrossRefGoogle Scholar
  160. Shin CG, An DG, Song HH, Lee C (2009) Beauvericin and enniatins H, I and MK1688 are new potent inhibitors of human immunodeficiency virus type-1 integrase. J Antibiot (Tokyo). 62:687–690PubMedCrossRefGoogle Scholar
  161. Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol. 48:21–43PubMedCrossRefGoogle Scholar
  162. Siegel MR, Bush LP (1997) Toxin production in grass/endophyte associations. The Mycota. Berlin. V Part A:185–207Google Scholar
  163. Singh HB, Keswani C, Reddy MS, Sansinenea E, García-Estrada C (2019) Secondary Metabolites of plant growth promoting. Springer Nature Singapore Pte, LtdCrossRefGoogle Scholar
  164. Sivasithamparam K, Ghisalberti E. 1998. Secondary metabolism in Trichoderma and Gliocladium. Trichoderma and Gliocladium Basis Biology, Taxonomy and Genetics, Vol.1 (Kubicek CP and Harman GE, eds.), London: Taylor and Francis. pp. 139-191.Google Scholar
  165. Song F, Dai H, Tong Y, Ren B, Chen C, Sun N, Liu X, Bian J, Liu M, Gao H, Liu H, Chen X, Zhang L (2010) Trichoderma ketones A-D and 7-O-methylkoningin D from the marine fungus Trichoderma koningii. J Nat Prod. 73:806–810PubMedCrossRefGoogle Scholar
  166. Steinebrunner F, Schiestl FP, Leuchtmann A (2008) Ecological role of volatiles produced by Epichloë: differences in antifungal toxicity. FEMS Microbiol Ecol. 64:307–316PubMedCrossRefGoogle Scholar
  167. Strasser H, Abendstein D (2000) Oosporein, a fungal secondary metabolite with antimicrobial properties. IOBC/WPRS Bullet. 23:113–115Google Scholar
  168. Strasser H, Abendstein D, Stuppner H, Butt TM (2000a) Monitoring the distribution of secondary metabolites produced by the entomogenous fungus Beauveria brongniartii with particular reference to oosporein. Mycol Res. 104:1227–1233CrossRefGoogle Scholar
  169. Strasser H, Vey A, Butt TM (2000b) Are there any risks in using entomopathogenic fungi for pest control, with particular reference to the bioactive metabolites of Metarhizium, Tolypocladium and Beauveria species? Biocontr Sci Technol. 10:717–735CrossRefGoogle Scholar
  170. Subbanna ARNS, Stanley J, Rajasekhara H, Mishra KK, Pattanayak A, Bhowmick R. 2019. Perspectives of microbial metabolites as pesticides in agricultural pest management. In: Co-evolution of secondary metabolites (Eds: Mérillon J-M, Ramawat KG), Springer nature Switzerland. Pp. 1-28.Google Scholar
  171. Süssmuth R, Müller J, Dohren HV, Molnar I (2011) Fungal cyclooligomer depsipeptides: from classical biochemistry to combinatorial biosynthesis. Nat Prod Rep. 28:99–124PubMedCrossRefGoogle Scholar
  172. Tanaka A, Tapper BA, Popay A, Parker EJ, Scott B (2005) A symbiosis expressed non-ribosomal peptide synthetase from a mutualistic fungal endophyte of perennial ryegrass confers protection to the symbiotum from insect herbivory. Mol Microbiol. 57:1036–1050PubMedCrossRefGoogle Scholar
  173. Tapper BA, Lane GA (2004) Janthitrems found in a Neotyphodium endophyte of perennial ryegrass. In: Kallenbach R, Rosenkrans CJ, Lock TR (eds) Proceedings of the 5th International Symposium on Neotyphodium/Grass interactions. Fayetteville, Arkansas, USA, p 301Google Scholar
  174. Tijerino A, Cardoza RE, Moraga J, Malmierca MG, Vicente F, Aleu J, Collado IG, Gutiérrez S, Monte E, Hermosa R (2011) Overexpression of the trichodiene synthase gene tri5 increases trichodermin production and antimicrobial activity in Trichoderma brevicompactum. Fungal Genet Biol. 48:285–296PubMedCrossRefGoogle Scholar
  175. Vargas W, Mukherjee PK, Laughlin D, Wiest A, Moran-Diez ME, Kenerley CM (2014) Role of gliotoxin in the symbiotic and pathogenic interactions of Trichoderma virens. Microbiology. 160:2319–2330PubMedCrossRefPubMedCentralGoogle Scholar
  176. Vega FE, Posada F, Aime MC, Pava-Ripoll M, Infante F, Rehner SA (2008) Entomopathogenic fungal endophytes. Biol Control. 46:72–82CrossRefGoogle Scholar
  177. Verma M, Brar SK, Tyagi RD, Surampalli RY, Valero JR (2007) Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochem Engin J. 37:1–20CrossRefGoogle Scholar
  178. Vey A. 2001. Toxic metabolites of fungal biocontrol agents. In Fungi as biocontrol agents: progress, problems and potential (Butt TM, Jackson CW, Magan N. eds), CABI International. pp. 311-346.Google Scholar
  179. Vilcinskas A, Jegorov A, Landa Z, Götz P, Matha V (1999) Effects of beauverolide L and cyclosporin A on humoral and cellular immune response of the greater wax moth. Galleria mellonella. Com. Biochem Physiol C Pharmacol Toxicol Endocrinol. 122:83–92CrossRefGoogle Scholar
  180. Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti MJ, Li H, Woo SL, Lorito M (2008) A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant Pathol. 72:80–86CrossRefGoogle Scholar
  181. Vinale F, Flematti G, Sivasithamparam K, Lorito M, Marra R, Skelton BW, Ghisalberti EL (2009) Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum. J Nat Prod. 72:2032–2035PubMedCrossRefPubMedCentralGoogle Scholar
  182. Vinale F, Girona IA, Nigro M, Mazzei P, Piccolo A, Ruocco M, Woo S, Rosa DR, Herrera CL, Lorito M (2012a) Cerinolactone, a hydroxyl-lactone derivative from Trichoderma cerinum. J Nat Prod. 27:103–106CrossRefGoogle Scholar
  183. Vinale F, Nicoletti R, Lacatena F, Marra R, Sacco A, Lombardi N, d’Errico G, Digilio MC, Lorito M, Woo S (2017) Secondary metabolites from the endophytis fungus Talomyces pinophilus. Nat Prod Res. 31:1778–1785PubMedCrossRefPubMedCentralGoogle Scholar
  184. Vinale F, Nigro M, Sivasithamparam K, Flematti G, Ghisalberti EL, Ruocco M, Varlese R, Marra R, Lanzuise S, Eid A, Woo SL, Lorito M (2013) Harzianic acid: a novel siderophore from Trichoderma harzianum. FEMS Microbiol Lett. 347:123–129PubMedPubMedCentralGoogle Scholar
  185. Vinale F, Sivasithamparam K, Ghisalberti EL, Ruocco M, Woo SL, Lorito M (2012b) Trichoderma secondary metabolites that affect plant metabolism. Nat Prod Commun. 7:1545–1550PubMedPubMedCentralGoogle Scholar
  186. Vinale F, Strakowska J, Mazzei P, Piccolo A, Marra R, Lombardi N, Manganiello G, Pascale A, Woo SL, Lorito M (2016) Cremenolide, a new antifungal, 10-member lactone from Trichoderma cremeum with plant growth promotion activity. Nat Prod Res. 30:2575–2581PubMedCrossRefPubMedCentralGoogle Scholar
  187. Viterbo A, Wiest A, Brotman Y, Chet I, Kenerley C (2007) The 18mer peptaibols from Trichoderma virens elicit plant defence responses. Mol Plant Pathol. 8:737–746PubMedCrossRefPubMedCentralGoogle Scholar
  188. Vizcaíno JA, Sanz L, Basilio A, Vicente F, Gutiérrez S, Hermosa MR, Monte E (2005) Screening of antimicrobial activities in Trichoderma isolates representing three Trichoderma sections. Mycol Res. 109:1397–1406PubMedCrossRefPubMedCentralGoogle Scholar
  189. Wagner BL, Lewis LC (2000) Colonization of corn, Zea mays, by the entomopathogenic fungus Beauveria bassiana. Appl Environ Microbiol. 66:3468–3473PubMedPubMedCentralCrossRefGoogle Scholar
  190. Wang Q, Xu L (2012) Beauvericin, a bioactive compound produced by fungi: a short review. Molecules. 17:2367–2377PubMedPubMedCentralCrossRefGoogle Scholar
  191. Wätjen W, Debbab A, Hohlfeld A, Chovolou Y, Proksch P (2014) The mycotoxin beauvericin induces apoptotic cell death in H4IIE hepatoma cells accompanied by an inhibition of NF-κB-activity and modulation of MAP-kinases. Toxicol Lett. 231:9–16PubMedCrossRefPubMedCentralGoogle Scholar
  192. Wilkinson HH, Siegel MR, Blankenship JD, Mallory AC, Bush LP, Schardl CL (2000) Contribution of fungal loline alkaloids to protection from aphids in a grass-endophyte mutualism. Molecular Plant-Microbe Interactions. 13:1027–1033PubMedCrossRefPubMedCentralGoogle Scholar
  193. Wisecaver JH, Slot J, Rokas A (2014) The evolution of fungal metabolic pathways. PLOS Genetics 10(1-11):e1004816PubMedPubMedCentralCrossRefGoogle Scholar
  194. Woo SL, Ruocco M, Vinale F, Nigro M, Marra R, Lombardi N, Pascale A, Lanzuise S, Manganiello G, Lorito M (2014) Trichoderma-based products and their widespread use in agricultura. Open Mycol J. 8:71–126CrossRefGoogle Scholar
  195. Wu B, Oesker V, Wiese J, Schmaljohann R, Imhoff JF (2014) Two new antibiotic pyridones produced by a marine fungus, Trichoderma sp. strain MF 106. Mar Drugs. 12:1208–1219PubMedPubMedCentralCrossRefGoogle Scholar
  196. Wu SN, Chen H, Liu YC, Chiang HT (2002) Block of L-type Ca2+ current by beauvericin, a toxic cyclopeptide, in the NG108-15 neuronal cell line. Chem Res Toxicol. 15:854–860PubMedCrossRefPubMedCentralGoogle Scholar
  197. Wu XF, Xu R, Ouyang ZJ, Qian C, Shen Y, Wu XD, Gu YH, Xu Q, Sun Y (2013) Beauvericin ameliorates experimental colitis by inhibiting activated T cells via down regulation of the PI3K/Akt signaling pathway. PLoS One. 8:e83013PubMedPubMedCentralCrossRefGoogle Scholar
  198. Xiao G, Ying SH, Zheng P, Wang ZL, Zhang S, Xie XQ, Shang Y, St Leger RJ, Zhao GP, Wang C, Feng MG (2012) Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Sci Rep. 2:483PubMedPubMedCentralCrossRefGoogle Scholar
  199. Xu Y, Orozco R, Wijeratne EM, Gunatilaka AA, Stock SP, Molnar I (2008) Biosynthesis of the cyclooligomer depsipeptide beauvericin, a virulence factor of the entomopathogenic fungus Beauveria bassiana. Chem Biol. 15:898–907PubMedCrossRefPubMedCentralGoogle Scholar
  200. Xu Y, Orozco R, Wijeratne EM, Espinosa-Artiles P, Gunatilaka LAA, Stock PS, Molnár I (2009) Biosynthesis of the cyclooligomer depsipeptide bassianolide, an insecticidal virulence factor of Beauveria bassiana. Fungal Genet Biol. 46:353–364PubMedCrossRefGoogle Scholar
  201. Xu L, Wang J, Zhao J, Li P, Shan T, Wang J, Li X, Zhou L (2010) Beauvericin from the endophytic fungus, Fusarium redolens, isolated from Dioscorea zingiberensis and its antibacterial activity. Nat Prod Commun. 5:811–814PubMedGoogle Scholar
  202. Young CA, Felitti S, Shields K, Spangenberg G, Johnson RD, Bryan GT, Saikia S, Scott B (2006) A complex gene cluster for indole-diterpene biosynthesis in the grass endophyte Neotyphodium lolii. Fungal Genet Biol. 43:679–693PubMedCrossRefGoogle Scholar
  203. Yu D, Xu F, Zi J, Wang S, Gage D, Zeng J, Zhan J (2013) Engineered production of fungal anticancer cyclooligomer depsipeptides in Saccharomyces cerevisiae. Metab Eng. 18:60–68PubMedCrossRefGoogle Scholar
  204. Yue Q, Miller CJ, White JF Jr, Richardson MD (2000) Isolation and characterization of fungal inhibitors from Epichloë festucae. J Agric Food Chem. 48:4687–4692PubMedCrossRefGoogle Scholar
  205. Zeilinger S, Gruber S, Bansal R, Mukherjee PK (2016) Secondary metabolism in Trichoderma – chemistry meets genomics. Fungal Biol. Rev. 30:74–90CrossRefGoogle Scholar
  206. Zhan J, Burns AM, Liu MX, Faeth SH, Gunatilaka AA (2007) Search for cell motility and angiogenesis inhibitors with potential anticancer activity: beauvericin and other constituents of two endophytic strains of Fusarium oxysporum. J Nat Prod. 70:227–232PubMedPubMedCentralCrossRefGoogle Scholar
  207. Zhang L, Yan K, Zhang Y, Huang R, Bian J, Zheng C, Sun H, Chen Z, Sun N, An R, Min F, Zhao W, Zhuo Y, You J, Song Y, Yu Z, Liu Z, Yang K, Gao H, Dai H, Zhang X, Wang J, Fu C, Pei G, Liu J, Zhang S, Goodfellow M, Jiang Y, Kuai J, Zhou G, Chen X (2007) High-throughput synergy screening identifies microbial metabolites as combination agents for the treatment of fungal infections. Proc Nat Acad Sci USA. 104:4606–4611PubMedCrossRefGoogle Scholar
  208. Zhang T, Zhuo Y, Jia X, Liu J, Gao H, Song F, Liu M, Zhang L (2013) Cloning and characterization of the gene cluster required for beauvericin biosynthesis in Fusarium proliferatum. China Life Sci. 56:628–637CrossRefGoogle Scholar
  209. Zhang YP, Nan ZB (2010) Germination and seedling anti-oxidative enzymes of endophyte infected populations of Elymus dahuricus under osmotic stress. Seed Sci Technol. 38:522–527CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Chetan Keswani
    • 1
  • Harikesh B. Singh
    • 2
  • Rosa Hermosa
    • 3
  • Carlos García-Estrada
    • 4
  • John Caradus
    • 5
  • Ya-Wen He
    • 6
  • Samia Mezaache-Aichour
    • 7
  • Travis R. Glare
    • 8
  • Rainer Borriss
    • 9
    • 10
  • Francesco Vinale
    • 11
  • Estibaliz Sansinenea
    • 12
    Email author
  1. 1.Department of Biochemistry, Faculty of ScienceBanaras Hindu UniversityVaranasiIndia
  2. 2.Department of Mycology and Plant Pathology, Institute of Agricultural SciencesBanaras Hindu UniversityVaranasiIndia
  3. 3.Departamento de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de FarmaciaUniversidad de SalamancaSalamancaSpain
  4. 4.Instituto de Biotecnología (INBIOTEC)LeónSpain
  5. 5.Grasslanz Technology LtdPalmerston NorthNew Zealand
  6. 6.School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
  7. 7.Département de Microbiologie Faculté SNVLMA UFA Sétif 1SétifAlgeria
  8. 8.Bio-Protection Research CentreLincoln UniversityLincolnNew Zealand
  9. 9.Humboldt-Universität zu Berlin, Institut für Agrar- und Gartenbauwissenschaften, Fachgebiet PhytomedizinBerlinGermany
  10. 10.Nord Reet UGGreifswaldGermany
  11. 11.Consiglio Nazionale delle Ricerche - National Research Council (CNR)Istituto per la Protezione Sostenibile delle Piante - Institute for Sustainable Plant Protection (IPSP)PorticiItaly
  12. 12.Facultad De Ciencias QuímicasBenemérita Universidad Autónoma De PueblaPueblaMexico

Personalised recommendations