Efficient stabilisation of curcumin microencapsulated into yeast cells via osmoporation

  • Fábio Gonçalves Macêdo de Medeiros
  • Sebastien Dupont
  • Laurent Beney
  • Gaëlle Roudaut
  • Roberta Targino Hoskin
  • Márcia Regina da Silva PedriniEmail author
Applied microbial and cell physiology


This study proposes the investigation of curcumin encapsulation into Saccharomyces cerevisiae cells through osmoporation as an efficient way of increasing curcumin stability. The influence of three process parameters (cell, ethanol and curcumin concentrations) on the encapsulation process was evaluated, and the obtained biocapsules were characterised for physical and photochemical stabilisation. Results showed that encapsulation efficiency was favoured by the increase of cells/curcumin ratio and ethanol concentration up to 60%. Differential scanning calorimetry (DSC) curves revealed that yeast encapsulation delayed the curcumin melting point up to 207 °C. Encapsulated curcumin retained over 80% of antioxidant activity after thermal treatment (150 °C) and over 70% after a 50-day exposure to artificial light. Photochemical stability of yeast-encapsulated curcumin was increased by 5.7-fold, and half-life time reached 181 days under illumination conditions. Overall, osmoporation-produced yeast biocapsules confirmed the versatility of osmoporation as an encapsulation technique and successfully improved curcumin stability.


Curcumin Osmoporation S. cerevisiae Antioxidant activity Stability Microencapsulation 



The authors would like to thank the Federal University of Rio Grande do Norte (UFRN), the Núcleo de Pesquisa em Alimentos e Medicamentos (NUPLAM/UFRN) and the Department of Material Science and Engineering (DEMAT/UFRN) for the technical support.

Funding information

F. G. M. de Medeiros was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), grant number 144415/2017-8.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Bishop JRP, Nelson G, Lamb J (1998) Microencapsulation in yeast cells. J Microencapsul 15:761–773. CrossRefPubMedGoogle Scholar
  2. Bolanos De La Torre AAS, Henderson T, Nigam PS, Owusu-Apenten RK (2015) A universally calibrated microplate ferric reducing antioxidant power (FRAP) assay for foods and applications to Manuka honey. Food Chem 174:119–123. CrossRefPubMedGoogle Scholar
  3. Câmara Junior AA, Dupont S, Beney L, Gervais P, Rosenthal A, Correia RTP, da S Pedrini MR (2016) Fisetin yeast-based bio-capsules via osmoporation: effects of process variables on the encapsulation efficiency and internalized fisetin content. Appl Microbiol Biotechnol 100:5547–5558. CrossRefGoogle Scholar
  4. Chakrabarti R, Rawat PS, Cooke BM, Coppel RL, Patankar S (2013) Cellular effects of curcumin on Plasmodium falciparum include disruption of microtubules. PLoS One 8:e57302. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chen Z, Xia Y, Liao S, Huang Y, Li Y, He Y, Tong Z, Li B (2014) Thermal degradation kinetics study of curcumin with nonlinear methods. Food Chem 155:81–86. CrossRefPubMedGoogle Scholar
  6. Chen X, Zou L-Q, Niu J, Liu W, Peng S-F, Liu C-M (2015) The stability, sustained release and cellular antioxidant activity of curcumin nanoliposomes. Molecules 20:14293–14311. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Ciamponi F, Duckham C, Tirelli N (2012) Yeast cells as microcapsules. Analytical tools and process variables in the encapsulation of hydrophobes in S. cerevisiae. Appl Microbiol Biotechnol 95:1445–1456. CrossRefPubMedGoogle Scholar
  8. da S Pedrini MR, Dupont S, de A Câmara Júnior A, Beney L, Gervais P (2014) Osmoporation: a simple way to internalize hydrophilic molecules into yeast. Appl Microbiol Biotechnol 98:1271–1280. CrossRefGoogle Scholar
  9. Dadkhodazade E, Mohammadi A, Shojaee-Aliabadi S, Mortazavian AM, Mirmoghtadaie L, Hosseini SM (2018) Yeast cell microcapsules as a novel carrier for cholecalciferol encapsulation: development, characterization and release properties. Food Biophys 13:404–411. CrossRefGoogle Scholar
  10. Duarte-Almeida JM, Santos RJ, Genovese MI, Lajolo FM (2006) Avaliação da atividade antioxidante utilizando sistema β-caroteno/ácido linoléico e método de seqüestro de radicais DPPH•. Ciênc Tecnol Aliment 26:446–452. CrossRefGoogle Scholar
  11. Dupont S, Beney L, Ritt JF, Lherminier J, Gervais P (2010) Lateral reorganization of plasma membrane is involved in the yeast resistance to severe dehydration. Biochim Biophys Acta Biomembr 1798:975–985. CrossRefGoogle Scholar
  12. Dupont S, Beney L, Ferreira T, Gervais P (2011) Nature of sterols affects plasma membrane behavior and yeast survival during dehydration. Biochim Biophys Acta Biomembr 1808:1520–1528. CrossRefGoogle Scholar
  13. Dupont S, Rapoport A, Gervais P, Beney L (2014) Survival kit of Saccharomyces cerevisiae for anhydrobiosis. Appl Microbiol Biotechnol 98:8821–8834. CrossRefPubMedGoogle Scholar
  14. Esatbeyoglu T, Huebbe P, Ernst IMAA, Chin D, Wagner AE, Rimbach G (2012) Curcumin-from molecule to biological function. Angew Chem Int Ed 51:5308–5332. CrossRefGoogle Scholar
  15. Esatbeyoglu T, Ulbrich K, Rehberg C, Rohn S, Rimbach G (2015) Thermal stability, antioxidant, and anti-inflammatory activity of curcumin and its degradation product 4-vinyl guaiacol. Food Funct 6:887–893. CrossRefPubMedGoogle Scholar
  16. Gervais P, Beney L (2001) Osmotic mass transfer in the yeast Saccharomyces cerevisiae. Cell Mol Biol (Noisy-le-grand) 47:831–839Google Scholar
  17. Hudson EA, de Paula HMC, Ferreira GMD, Ferreira GMD, do C Hespanhol M, da Silva LHM, dos S Pires AC (2018) Thermodynamic and kinetic analyses of curcumin and bovine serum albumin binding. Food Chem 242:505–512. CrossRefPubMedGoogle Scholar
  18. Jafari Y, Sabahi H, Rahaie M (2016) Stability and loading properties of curcumin encapsulated in Chlorella vulgaris. Food Chem 211:700–706. CrossRefPubMedGoogle Scholar
  19. Kavetsou E, Koutsoukos S, Daferera D, Polissiou MG, Karagiannis D, Perdikis DC, Detsi A (2019) Encapsulation of Mentha pulegium essential oil in yeast cell microcarriers: an approach to environmentally friendly pesticides. J Agric Food Chem 67:4746–4753. CrossRefPubMedGoogle Scholar
  20. Lipke PN, Ovalle R (1998) Cell wall architecture in yeast: new structure and new challenges. J Bacteriol 180:3735–3740. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Mangolim CS, Moriwaki C, Nogueira AC, Sato F, Baesso ML, Neto AM, Matioli G (2014) Curcumin–β-cyclodextrin inclusion complex: stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application. Food Chem 153:361–370. CrossRefPubMedGoogle Scholar
  22. Medeiros FGM, Correia RTP, Dupont S, Beney L, Pedrini MRS (2018) Curcumin and Fisetin internalization into Saccharomyces cerevisiae cells via osmoporation: Impact of multiple osmotic treatments on the process efficiency. Lett Appl Microbiol 67:363–369. CrossRefPubMedGoogle Scholar
  23. Mihoubi W, Sahli E, Gargouri A, Amiel C (2017) FTIR spectroscopy of whole cells for the monitoring of yeast apoptosis mediated by p53 over-expression and its suppression by Nigella sativa extracts. PLoS One 12:1–16. CrossRefGoogle Scholar
  24. Moghadam MN, Khameneh B, Fazly Bazzaz BS (2019) Saccharomyces cervisiae as an efficient carrier for delivery of bioactives: a Review. Food Biophys 14:346–353. CrossRefGoogle Scholar
  25. Normand V, Dardelle G, Bouquerand PE, Nicolas L, Johnston DJ (2005) Flavor encapsulation in yeasts: Limonene used as a model system for characterization of the release mechanism. J Agric Food Chem 53:7532–7543. CrossRefPubMedGoogle Scholar
  26. Paramera EI, Konteles SJ, Karathanos VT (2011a) Stability and release properties of curcumin encapsulated in Saccharomyces cerevisiae, β-cyclodextrin and modified starch. Food Chem 125:913–922. CrossRefGoogle Scholar
  27. Paramera EI, Konteles SJ, Karathanos VT (2011b) Microencapsulation of curcumin in cells of Saccharomyces cerevisiae. Food Chem 125:892–902. CrossRefGoogle Scholar
  28. Pham-Hoang BN, Phan-Thi H, Waché Y (2015) Can biological structures be natural and sustainable capsules? Front Chem 3:1–4. CrossRefGoogle Scholar
  29. Pham-Hoang BN, Romero-Guido C, Phan-Thi H, Waché Y (2018) Strategies to improve carotene entry into cells of Yarrowia lipolytica in a goal of encapsulation. J Food Eng 224:88–94. CrossRefGoogle Scholar
  30. Plavcová Z, Šalamúnová P, Saloň I, Štěpánek F, Hanuš J, Hošek J (2019) Curcumin encapsulation in yeast glucan particles promotes its anti-inflammatory potential in vitro. Int J Pharm 568:118532. CrossRefPubMedGoogle Scholar
  31. Pu C, Tang W (2017) Encapsulation of lycopene in Chlorella pyrenoidosa: loading properties and stability improvement. Food Chem 235:283–289. CrossRefPubMedGoogle Scholar
  32. Pu C, Tang W, Li X, Li M, Sun Q (2019) Stability enhancement efficiency of surface decoration on curcumin-loaded liposomes: Comparison of guar gum and its cationic counterpart. Food Hydrocoll 87:29–37. CrossRefGoogle Scholar
  33. Sharma K, Ko EY, Assefa AD, Ha S, Nile SH, Lee ET, Park SW (2015) Temperature-dependent studies on the total phenolics, flavonoids, antioxidant activities, and sugar content in six onion varieties. J Food Drug Anal 23:243–252. CrossRefPubMedGoogle Scholar
  34. Shi G, Rao L, Yu H, Xiang H, Pen G, Long S, Yang C (2007) Yeast-cell-based microencapsulation of chlorogenic acid as a water-soluble antioxidant. J Food Eng 80:1060–1067. CrossRefGoogle Scholar
  35. Shi G, Rao L, Yu H, Xiang H, Yang H, Ji R (2008) Stabilization and encapsulation of photosensitive resveratrol within yeast cell. Int J Pharm 349:83–93. CrossRefPubMedGoogle Scholar
  36. Shi G, Rao L, Xie Q, Li J, Li B, Xiong X (2010) Characterization of yeast cells as a microencapsulation wall material by Fourier-transform infrared spectroscopy. Vib Spectrosc 53:289–295. CrossRefGoogle Scholar
  37. Solanki P, Patel S, Devkar R, Patel A (2019) Camptothecin encapsulated into functionalized MCM-41: In vitro release study, cytotoxicity and kinetics. Mater Sci Eng C 98:1014–1021. CrossRefGoogle Scholar
  38. Sun Y, Lee C-C, Hung W-C, Chen F-Y, Lee M-T, Huang HW (2008) The bound states of amphipathic drugs in lipid bilayers: study of curcumin. Biophys J 95:2318–2324. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Sun C, Xu C, Mao L, Wang D, Yang J, Gao Y (2017) Preparation, characterization and stability of curcumin-loaded zein-shellac composite colloidal particles. Food Chem 228:656–667. CrossRefPubMedGoogle Scholar
  40. Sun B, Tian Y, Chen L, Jin Z (2018) Linear dextrin as curcumin delivery system: Effect of degree of polymerization on the functional stability of curcumin. Food Hydrocoll 77:911–920. CrossRefGoogle Scholar
  41. Tønnesen HH, Greenhill JV (1992) Studies on curcumin and curcuminoids. XXII: curcumin as a reducing agent and as a radical scavenger. Int J Pharm 87:79–87CrossRefGoogle Scholar
  42. Wang L, Gulati P, Santra D, Rose D, Zhang Y (2018) Nanoparticles prepared by proso millet protein as novel curcumin delivery system. Food Chem 240:1039–1046. CrossRefPubMedGoogle Scholar
  43. Xie H, Xiang C, Li Y, Wang L, Zhang Y, Song Z, Ma X, Lu X, Lei Q, Fang W (2019) Fabrication of ovalbumin/κ-carrageenan complex nanoparticles as a novel carrier for curcumin delivery. Food Hydrocoll 89:111–121. CrossRefGoogle Scholar
  44. Young S, Nitin N (2019) Thermal and oxidative stability of curcumin encapsulated in yeast microcarriers. Food Chem 275:1–7. CrossRefPubMedGoogle Scholar
  45. Young S, Dea S, Nitin N (2017) Vacuum facilitated infusion of bioactives into yeast microcarriers: Evaluation of a novel encapsulation approach. Food Res Int 100:100–112. CrossRefPubMedGoogle Scholar
  46. Zhao S, Zhang Y, Liu Y, Yang F, Yu W, Zhang S, Ma X, Sun G (2018) Optimization of preparation conditions for calcium pectinate with response surface methodology and its application for cell encapsulation. Int J Biol Macromol 115:29–34. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Bioprocess Laboratory, Chemical Engineering DepartmentFederal University of Rio Grande do NorteNatalBrazil
  2. 2.Laboratory of Food Bioactive Compounds, Chemical Engineering DepartmentFederal University of Rio Grande do NorteNatalBrazil
  3. 3.UMR Procédés Alimentaires et Microbiologiques (PAM UMR A 02.102)Univ. Bourgogne Franche-Comté, AgroSup DijonDijonFrance

Personalised recommendations