Advertisement

Applied Microbiology and Biotechnology

, Volume 103, Issue 23–24, pp 9711–9722 | Cite as

Profiling population-level diversity and dynamics of Accumulibacter via high throughput sequencing of ppk1

  • Wei Song
  • Min Jia Zheng
  • Hao Li
  • Wei Zheng
  • Feng GuoEmail author
Environmental biotechnology

Abstract

As the key organism for enhanced biological phosphorus removal, Accumulibacter has shown high intragenus diversity based on the phylogeny of polyphosphate kinase1 gene (ppk1) and many clade-specific features related to performance of wastewater treatment. However, the widely used molecular approaches are deficient or cost-inefficient in providing a comprehensive and quantitative population-level profile for Accumulibacter in complex community. In this study, we introduced a pipeline to analyze the population-level diversity and dynamics of Accumulibacter via high throughput sequencing (HTS) of ppk1 and 16S rRNA gene simultaneously. The HTS approach was assessed by testing primer coverage, performing sample replication, and comparing with a traditional clone library. Based on survey on full-scale activated sludge samples, unexpected high microdiversity in Accumulibacter and a tendency of exclusivity between two phylogenetic types were discovered. Moreover, the pipeline facilitated monitoring the population-level dynamics and co-occurrence pattern under various laboratory enriching conditions. The results revealed previously uncharacterized intraclade dynamics during enrichment, little effect of denitrifying process on the Accumulibacter diversity, and the niche adaption of Clade IIC on propionate as sole carbon source. Co-occurrence of Accumulibacter populations further partially supported the exclusivity of two types. A few bacterial taxa, including Cytophagaceae-, Prosthecobacter-, and Compteibacter-related taxa, showed co-occurrence with many Accumulibacter populations, suggesting their niche co-selection or potential metabolic interactions with Accumulibacter. The present pipeline is transplantable for studying microdiversity and niche differentiation of other functional microorganisms in complex microbial systems.

Keywords

Enhanced biological phosphate removal Activated sludge Microdiversity Co-occurrence 

Notes

Acknowledgments

Prof. Xin Yu and Mr. Chengsong Ye are thanked for providing the activated sludge samples from WWTPs. Mr. Le Yang is thanked for his helps in operating partial bioreactors.

Funding information

The authors received financial supports from the National Natural Science Foundation of China (No. 31500100 and No. 31670492).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2019_10183_MOESM1_ESM.pdf (471 kb)
ESM 1 (PDF 471 kb)

References

  1. Acevedo B, Oehmen A, Carvalho G, Seco A, Borrás L, Barat R (2012) Metabolic shift of polyphosphate-accumulating organisms with different levels of polyphosphate storage. Water Res 46(6):1889–1900.  https://doi.org/10.1016/j.watres.2012.01.003 CrossRefPubMedGoogle Scholar
  2. Ahn J, Schroeder S, Beer M, McIlroy S, Bayly RC, May JW, Vasiliadis G, Seviour RJ (2007) Ecology of the microbial community removing phosphate from wastewater under continuously aerobic conditions in a sequencing batch reactor. Appl Environ Microbiol 73(7):2257–2270.  https://doi.org/10.1128/AEM.02080-06 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Albertsen M, Hansen LB, Saunders AM, Nielsen PH, Nielsen KL (2012) A metagenome of a full-scale microbial community carrying out enhanced biological phosphorus removal. ISME J 6(6):1094–1106.  https://doi.org/10.1038/ismej.2011.176 CrossRefPubMedGoogle Scholar
  4. Albertsen M, McIlroy SJ, Stokholm-Bjerregaard M, Karst SM, Nielsen PH (2016) “Candidatus Propionivibrio aalborgensis”: a novel glycogen accumulating organism abundant in full-scale enhanced biological phosphorus removal plants. Front Microbiol 7(119)Google Scholar
  5. APHA (1998) Standard methods for the examination of water and wastewater. American Public Health Association, Washington D.CGoogle Scholar
  6. Barr JJ, Dutilh BE, Skennerton CT, Fukushima T, Hastie ML, Gorman JJ, Tyson GW, Bond PL (2016) Metagenomic and metaproteomic analyses of Accumulibacter phosphatis-enriched floccular and granular biofilm. Environ Microbiol 18(1):273–287.  https://doi.org/10.1111/1462-2920.13019 CrossRefGoogle Scholar
  7. Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. In: international conference on weblogs and social mediaGoogle Scholar
  8. Brazelton WJ, Sogin ML, Baross JA (2010) Multiple scales of diversification within natural populations of archaea in hydrothermal chimney biofilms. Environ Microbiol Rep 2(2):236–242.  https://doi.org/10.1111/j.1758-2229.2009.00097.x CrossRefPubMedGoogle Scholar
  9. Camejo PY, Owen BR, Martirano J, Ma J, Kapoor V, Santo Domingo J, McMahon KD, Noguera DR (2016) Candidatus Accumulibacter phosphatis clades enriched under cyclic anaerobic and microaerobic conditions simultaneously use different electron acceptors. Water Res 102:125–137.  https://doi.org/10.1016/j.watres.2016.06.033 CrossRefPubMedGoogle Scholar
  10. Camejo PY, Oyserman BO, McMahon KD, Noguera DR (2019) Integrated omic analyses provide evidence that a “Candidatus Accumulibacter phosphatis” strain performs denitrification under microaerobic conditions. BioRxiv 4(1)Google Scholar
  11. Chafee M, Fernàndez-Guerra A, Buttigieg PL, Gerdts G, Eren AM, Teeling H, Amann RI (2018) Recurrent patterns of microdiversity in a temperate coastal marine environment. ISME J 12(1):237–252.  https://doi.org/10.1038/ismej.2017.165 CrossRefGoogle Scholar
  12. Church J, Ryu H, Sadmani AA, Randall AA, Santo Domingo J, Lee WH (2018) Multiscale investigation of a symbiotic microalgal-integrated fixed film activated sludge (MAIFAS) process for nutrient removal and photo-oxygenation. Bioresour Technol 268:128–138.  https://doi.org/10.1016/j.biortech.2018.07.123 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461.  https://doi.org/10.1093/bioinformatics/btq461 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Edgar RC (2016a) UCHIME2: improved chimera prediction for amplicon sequencing. BioRxiv 074252.  https://doi.org/10.1101/074252
  15. Edgar RC (2016b) UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. BioRxiv 081257.  https://doi.org/10.1101/081257
  16. Edgar RC (2018) UNCROSS2: identification of cross-talk in 16S rRNA OTU tables. BioRxiv 400762.  https://doi.org/10.1101/400762
  17. Flowers JJ, He SM, Yilmaz S, Noguera DR, McMahon KD (2009) Denitrification capabilities of two biological phosphorus removal sludges dominated by different ‘Candidatus Accumulibacter’ clades. Environ Microbiol Rep 1(6):583–588.  https://doi.org/10.1111/j.1758-2229.2009.00090.x CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gao H, Mao Y, Zhao X, Liu W-T, Zhang T, Wells G (2019) Genome-centric metagenomics resolves microbial diversity and prevalent truncated denitrification pathways in a denitrifying PAO-enriched bioprocess. Water Res 155:275–287.  https://doi.org/10.1016/j.watres.2019.02.020 CrossRefPubMedGoogle Scholar
  19. Garcia Martin H, Ivanova N, Kunin V, Warnecke F, Barry KW, McHardy AC, Yeates C, He S, Salamov AA, Szeto E, Dalin E, Putnam NH, Shapiro HJ, Pangilinan JL, Rigoutsos I, Kyrpides NC, Blackall LL, McMahon KD, Hugenholtz P (2006) Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities. Nat Biotechnol 24(10):1263–1269.  https://doi.org/10.1038/nbt1247 CrossRefPubMedGoogle Scholar
  20. Gruber-Dorninger C, Pester M, Kitzinger K, Savio DF, Loy A, Rattei T, Wagner M, Daims H (2015) Functionally relevant diversity of closely related Nitrospira in activated sludge. ISME J 9(3):643–655.  https://doi.org/10.1038/ismej.2014.156 CrossRefPubMedGoogle Scholar
  21. He S, Gall DL, McMahon KD (2007) “Candidatus Accumulibacter” population structure in enhanced biological phosphorus removal sludges as revealed by polyphosphate kinase genes. Appl Environ Microbiol 73(18):5865–5874.  https://doi.org/10.1128/AEM.01207-07 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ju F, Zhang T (2015) Bacterial assembly and temporal dynamics in activated sludge of a full-scale municipal wastewater treatment plant. ISME J 9(3):683–695.  https://doi.org/10.1038/ismej.2014.162 CrossRefPubMedGoogle Scholar
  23. Kip N, Dutilh BE, Pan Y, Bodrossy L, Neveling K, Kwint MP, Jetten MS, Op den Camp HJ (2011) Ultra-deep pyrosequencing of pmoA amplicons confirms the prevalence of Methylomonas and Methylocystis in Sphagnum mosses from a Dutch peat bog. Environ Microbiol Rep 3(6):667–673.  https://doi.org/10.1111/j.1758-2229.2011.00260.x CrossRefGoogle Scholar
  24. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79(17):5112–5120.  https://doi.org/10.1128/AEM.01043-13 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Law Y, Kirkegaard RH, Cokro AA, Liu X, Arumugam K, Xie C, Stokholm-Bjerregaard M, Drautz-Moses DI, Nielsen PH, Wuertz S (2016) Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions. Sci Rep 6:25719.  https://doi.org/10.1038/srep25719 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lawson CE, Strachan BJ, Hanson NW, Hahn AS, Hall ER, Rabinowitz B, Mavinic DS, Ramey WD, Hallam SJ (2015) Rare taxa have potential to make metabolic contributions in enhanced biological phosphorus removal ecosystems. Environ Microbiol 17(12):4979–4993.  https://doi.org/10.1111/1462-2920.12875 CrossRefPubMedGoogle Scholar
  28. Li D, Lv Y, Zeng H, Zhang J (2016) Long term operation of continuous-flow system with enhanced biological phosphorus removal granules at different COD loading. Bioresour Technol 216:761–767.  https://doi.org/10.1016/j.biortech.2016.06.022 CrossRefPubMedGoogle Scholar
  29. Li C, Zeng W, Li N, Guo Y, Peng Y (2019) Population structure and morphotype analysis of “Candidatus Accumulibacter” through FISH-Staining-Flow cytometry. Appl Environ Microbiol 02943:18.  https://doi.org/10.1128/AEM.02943-18 CrossRefGoogle Scholar
  30. MacConaill LE, Burns RT, Nag A, Coleman HA, Slevin MK, Giorda K, Light M, Lai K, Jarosz M, McNeill MS, Ducar MD, Meyerson M, Thorner AR (2018) Unique, dual-indexed sequencing adapters with UMIs effectively eliminate index crosstalk and significantly improve sensitivity of massively parallel sequencing. BMC. Genomics 19(1):30CrossRefGoogle Scholar
  31. Mao Y, Yu K, Xia Y, Chao Y, Zhang T (2014) Genome reconstruction and gene expression of “Candidatus Accumulibacter phosphatis” Clade IB performing biological phosphorus removal. Environ Sci Technol 48(17):10363–10371.  https://doi.org/10.1021/es502642b CrossRefPubMedGoogle Scholar
  32. Mao Y, Graham DW, Tamaki H, Zhang T (2015) Dominant and novel clades of Candidatus Accumulibacter phosphatis in 18 globally distributed full-scale wastewater treatment plants. Sci Rep 5:11857.  https://doi.org/10.1038/srep11857 CrossRefPubMedPubMedCentralGoogle Scholar
  33. McIlroy SJ, Albertsen M, Andresen EK, Saunders AM, Kristiansen R, Stokholm-Bjerregaard M, Nielsen KL, Nielsen PH (2014) ‘Candidatus Competibacter’-lineage genomes retrieved from metagenomes reveal functional metabolic diversity. ISME J 8(3):613–624.  https://doi.org/10.1038/ismej.2013.162 CrossRefPubMedGoogle Scholar
  34. McIlroy SJ, Nittami T, Kanai E, Fukuda J, Saunders AM, Nielsen PH (2015) Re-appraisal of the phylogeny and fluorescence in situ hybridization probes for the analysis of the Competibacteraceae in wastewater treatment systems. Environ Microbiol Rep 7(2):166–174.  https://doi.org/10.1111/1758-2229.12215 CrossRefPubMedGoogle Scholar
  35. McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8(4):e61217.  https://doi.org/10.1371/journal.pone.0061217 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Nancharaiah Y, Mohan SV, Lens P (2016) Recent advances in nutrient removal and recovery in biological and bioelectrochemical systems. Bioresour Technol 215:173–185.  https://doi.org/10.1016/j.biortech.2016.03.129 CrossRefPubMedGoogle Scholar
  37. Nittami T, Oi H, Matsumoto K, Seviour RJ (2011) Influence of temperature, pH and dissolved oxygen concentration on enhanced biological phosphorus removal under strictly aerobic conditions. New Biotechnol 29(1):2–8.  https://doi.org/10.1016/j.nbt.2011.06.012 CrossRefGoogle Scholar
  38. Nittami T, Mukai M, Uematsu K, Yoon LW, Schroeder S, Chua ASM, Fukuda J, Fujita M, Seviour RJ (2017) Effects of different carbon sources on enhanced biological phosphorus removal and “Candidatus Accumulibacter” community composition under continuous aerobic condition. Appl Microbiol Biotechnol 101(23-24):8607–8619.  https://doi.org/10.1007/s00253-017-8571-3 CrossRefPubMedGoogle Scholar
  39. Nurmiyanto A, Kodera H, Kindaichi T, Ozaki N, Aoi Y, Ohashi A (2017) Dominant Candidatus Accumulibacter phosphatis enriched in response to phosphate concentrations in EBPR process. Microbes Environ 32(3):260–267.  https://doi.org/10.1264/jsme2.ME17020 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Oehmen A, Lemos PC, Carvalho G, Yuan Z, Keller J, Blackall LL, Reis MA (2007) Advances in enhanced biological phosphorus removal: from micro to macro scale. Water Res 41(11):2271–2300.  https://doi.org/10.1016/j.watres.2007.02.030 CrossRefPubMedGoogle Scholar
  41. Ong YH, Chua AS, Lee BP, Ngoh GC (2013) Long-term performance evaluation of EBPR process in tropical climate: start-up, process stability, and the effect of operational pH and influent C:P ratio. Water Sci Technol 67(2):340–346.  https://doi.org/10.2166/wst.2012.552 CrossRefPubMedGoogle Scholar
  42. Oyserman BO, Noguera DR, del Rio TG, Tringe SG, McMahon KD (2016) Metatranscriptomic insights on gene expression and regulatory controls in Candidatus Accumulibacter phosphatis. ISME J 10(4):810–822.  https://doi.org/10.1038/ismej.2015.155 CrossRefPubMedGoogle Scholar
  43. Peterson SB, Warnecke F, Madejska J, McMahon KD, Hugenholtz P (2008) Environmental distribution and population biology of Candidatus Accumulibacter, a primary agent of biological phosphorus removal. Environ Microbiol 10(10):2692–2703.  https://doi.org/10.1111/j.1462-2920.2008.01690.x CrossRefPubMedPubMedCentralGoogle Scholar
  44. Pijuan M, Guisasola A, Baeza JA, Carrera J, Casas C, Lafuente J (2006) Net P-removal deterioration in enriched PAO sludge subjected to permanent aerobic conditions. J Biotechnol 123(1):117–126.  https://doi.org/10.1016/j.jbiotec.2005.10.018 CrossRefPubMedGoogle Scholar
  45. Remmas N, Melidis P, Katsioupi E, Ntougias S (2016) Effects of high organic load on amoA and nirS gene diversity of an intermittently aerated and fed membrane bioreactor treating landfill leachate. Bioresour Technol 220:557–565.  https://doi.org/10.1016/j.biortech.2016.09.009 CrossRefPubMedGoogle Scholar
  46. Rubio-Rincón F, Lopez-Vazquez C, Welles L, van Loosdrecht M, Brdjanovic D (2017) Cooperation between Candidatus Competibacter and Candidatus Accumulibacter clade I, in denitrification and phosphate removal processes. Water Res 120:156–164.  https://doi.org/10.1016/j.watres.2017.05.001 CrossRefPubMedGoogle Scholar
  47. Saad SA, Welles L, Abbas B, Lopez-Vazquez CM, van Loosdrecht MCM, Brdjanovic D (2016) Denitrification of nitrate and nitrite by ‘Candidatus Accumulibacter phosphatis’ clade IC. Water Res 105:97–109.  https://doi.org/10.1016/j.watres.2016.08.061 CrossRefPubMedGoogle Scholar
  48. Skennerton CT, Barr JJ, Slater FR, Bond PL, Tyson GW (2015) Expanding our view of genomic diversity in Candidatus Accumulibacter clades. Environ Microbiol 17(5):1574–1585.  https://doi.org/10.1111/1462-2920.12582 CrossRefPubMedGoogle Scholar
  49. Slater FR, Johnson CR, Blackall LL, Beiko RG, Bond PL (2010) Monitoring associations between clade-level variation, overall community structure and ecosystem function in enhanced biological phosphorus removal (EBPR) systems using terminal-restriction fragment length polymorphism (T-RFLP). Water Res 44(17):4908–4923.  https://doi.org/10.1016/j.watres.2010.07.028 CrossRefPubMedGoogle Scholar
  50. Stoddard SF, Smith BJ, Hein R, Roller BR, Schmidt TM (2014) rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res 43(D1):D593–D598.  https://doi.org/10.1093/nar/gku1201 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Vargas M, Casas C, Baeza J (2009) Maintenance of phosphorus removal in an EBPR system under permanent aerobic conditions using propionate. Biochem Eng J 43(3):288–296.  https://doi.org/10.1016/j.bej.2008.10.013 CrossRefGoogle Scholar
  52. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K, Kyrpides NC, Pati A (2015) Microbial species delineation using whole genome sequences. Nucleic Acids Res 43(14):6761–6771.  https://doi.org/10.1093/nar/gkv657 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Watson S, Needoba J, Peterson T (2019) Widespread detection of Candidatus Accumulibacter phosphatis, a polyphosphate-accumulating organism, in sediments of the Columbia River estuary. Environ Microbiol Rep 21(4):1369–1382.  https://doi.org/10.1111/1462-2920.14576 CrossRefGoogle Scholar
  54. Welles L, Lopez-Vazquez CM, Hooijmans CM, van Loosdrecht MCM, Brdjanovic D (2016) Prevalence of ‘Candidatus Accumulibacter phosphatis’ type II under phosphate limiting conditions. AMB Express 6(1):44.  https://doi.org/10.1186/s13568-016-0214-z CrossRefPubMedPubMedCentralGoogle Scholar
  55. Welles L, Abbas B, Sorokin DY, Lopez-Vazquez CM, Hooijmans CM, van Loosdrecht M, Brdjanovic D (2017) Metabolic response of “Candidatus Accumulibacter Phosphatis” Clade II C to changes in influent P/C ratio. Front Microbiol 7:2121.  https://doi.org/10.3389/fmicb.2016.02121 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67(5):1613–1617.  https://doi.org/10.1099/ijsem.0.001755 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Zhang T, Shao MF, Ye L (2012) 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME J 6(6):1137–1147.  https://doi.org/10.1038/ismej.2011.188 CrossRefPubMedGoogle Scholar
  58. Zhang AN, Mao Y, Zhang T (2016) Development of quantitative real-time PCR assays for different clades of “Candidatus Accumulibacter”. Sci Rep 6:23993.  https://doi.org/10.1038/srep23993 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Zhao J, Wang X, Li X, Jia S, Wang Q, Peng Y (2019) Improvement of partial nitrification endogenous denitrification and phosphorus removal system: balancing competition between phosphorus and glycogen accumulating organisms to enhance nitrogen removal without initiating phosphorus removal deterioration. Bioresour Technol 281:382–391.  https://doi.org/10.1016/j.biortech.2019.02.109 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Wei Song
    • 1
  • Min Jia Zheng
    • 1
  • Hao Li
    • 1
  • Wei Zheng
    • 1
  • Feng Guo
    • 1
    Email author
  1. 1.School of Life ScienceXiamen UniversityFujianPeople’s Republic of China

Personalised recommendations