Advertisement

Applied Microbiology and Biotechnology

, Volume 104, Issue 3, pp 935–951 | Cite as

Metabolic engineering for the production of fat-soluble vitamins: advances and perspectives

  • Panhong Yuan
  • Shixiu Cui
  • Yanfeng Liu
  • Jianghua Li
  • Guocheng DuEmail author
  • Long LiuEmail author
Mini-Review
  • 199 Downloads

Abstract

Fat-soluble vitamins are vitamins that are insoluble in water, soluble in fat, and organic solvents; they are found in minute amount in various foods. Fat-soluble vitamins, including vitamins A, D, E, and K, have been widely used in food, cosmetics, health care products, and pharmaceutical industries. Fat-soluble vitamins are currently produced via biological and chemical synthesis. In recent years, fat-soluble vitamin production by biotechnological routes has been regarded as a very promising approach. Based on biosynthetic pathways, considerable advances of α-tocopherol and β-carotenes have been achieved in transgenic plants and microalgae. Microbial fermentation, as an alternative method for the production of vitamin K and β-carotenes, is attracting considerable attention because it is an environment friendly process. In this review, we address the function and applications of fat-soluble vitamins, and an overview of current developments in the production of fat-soluble vitamins in transgenic plants, microalgae, and microorganisms. We focus on the metabolic and process engineering strategies for improving production of fat-soluble vitamins, and we hope this review can be useful for the people who are interested in the production of fat-soluble vitamins by biotechnological routes.

Keywords

Fat-soluble vitamins Transgenic plant production Microalgae biosynthetic product Microbial production Systems metabolic engineering 

Notes

Funding information

This work was financially supported by the National Natural Science Foundation of China (31871784, 31870069, 21676119, and 31671845), Postgraduate Research & Practice Innovation Program of Jiangsu Provence (KYCX18_1786), and The Fundamental Research Funds for the Central Universities (JUSRP51713B).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Ajjawi I, David S (2004) Engineered plants with elevated vitamin E: a nutraceutical success story. Trends Biotechnol 22:99–100.  https://doi.org/10.1016/j.tibtech.2004.01.008 CrossRefGoogle Scholar
  2. Albers R, Bol M, Bleumink R, Willems AA, Pieters RH (2003) Effects of supplementation with vitamins A, C, and E, selenium, and zinc on immune function in a murine sensitization model. Nutrition 19:940–946.  https://doi.org/10.1016/S0899-9007(03)00178-3 CrossRefPubMedGoogle Scholar
  3. Bai C, Capell T, Berman J, Medina V, Sandmann G, Christou P, Zhu C (2016) Bottlenecks in carotenoid biosynthesis and accumulation in rice endosperm are influenced by the precursor-product balance. Plant Biotechnol J 14:195–205.  https://doi.org/10.1111/pbi.12373 CrossRefPubMedGoogle Scholar
  4. Benedetti A, Daly S, Xaiz R, Pagani H (2009) A process for the preparation of vitamin K2. European Patent 20070154998Google Scholar
  5. Bentley R, Meganathan R (1982) Biosynthesis of vitamin K (menaquinone) in bacteria. Microbiol Rev 46:241–280PubMedPubMedCentralGoogle Scholar
  6. Berenjian A, Mahanama R, Talbot A, Biffin R, Regtop H, Valtchev P, Kavanagh J, Dehghani F (2011) Efficient media for high menaquinone-7 production: response surface methodology approach. New Biotechnol 28:665–672.  https://doi.org/10.1016/j.nbt.2011.07.007 CrossRefGoogle Scholar
  7. Berenjian A, Mahanama R, Talbot A, Regtop H, Kavanagh J, Dehghani F (2012) Advances in menaquinone-7 production by Bacillus subtilis natto: fed-batch glycerol addition. Am J Biochem Biotechnol 8:105–110.  https://doi.org/10.3844/ajbbsp.2012.105.110 CrossRefGoogle Scholar
  8. Berenjian A, Chan NL, Mahanama R, Talbot A, Regtop H, Kavanagh J, Dehghani F (2013) Effect of biofilm formation by Bacillus subtilis natto on menaquinone-7 biosynthesis. Mol Biotechnol 54:371–378.  https://doi.org/10.1007/s12033-012-9576-x CrossRefPubMedGoogle Scholar
  9. Berenjian A, Mahanama R, Talbot A, Regtop H, Kavanagh J, Dehghani F (2014) Designing of an intensification process for biosynthesis and recovery of menaquinone-7. Appl Biochem Biotechnol 172:1347–1357.  https://doi.org/10.1007/s12010-013-0602-7 CrossRefPubMedGoogle Scholar
  10. Berenjian A, Mahanama R, Kavanagh J, Dehghani F (2015) Vitamin K series: current status and future prospects. Crit Rev Biotechnol 35:199–208.  https://doi.org/10.3109/07388551.2013.832142 CrossRefPubMedGoogle Scholar
  11. Beveridge LA, Khan F, Struthers AD, Armitage J, Barchetta I, Bressendorff I, Cavallo MG, Clarke R, Dalan R, Dreyer G, Gepner AD, Forouhi NG, Harris RA, Hitman GA, Larsen T, Khadgawat R, Marckmann P, Mose FH, Pilz S, Scholze A, Shargorodsky M, Sokol SI, Stricker H, Zoccali C, Witham MD (2018) Effect of vitamin D supplementation on markers of vascular function: a systematic review and individual participant meta-analysis. J Am Heart Assoc 19:940–946.  https://doi.org/10.1161/jaha.117.008273 CrossRefGoogle Scholar
  12. Bonrath W, Netscher T (2005) Catalytic processes in vitamins synthesis and production. Appl Catal A-Gen 280:55–73.  https://doi.org/10.1016/j.apcata.2004.08.028 CrossRefGoogle Scholar
  13. Cahoon EB, Hall SE, Ripp KG, Ganzke TS, Hitz WD, Coughlan SJ (2003) Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nat Biotechnol 21:1082–1087.  https://doi.org/10.1038/nbt853 CrossRefPubMedGoogle Scholar
  14. Chaudhary N, Khurana P (2013) Cloning, functional characterisation and transgenic manipulation of vitamin E biosynthesis genes of wheat. Funct Plant Biol 40:1129–1136.  https://doi.org/10.1071/FP12265 CrossRefGoogle Scholar
  15. Che P, Zhao ZY, Glassman K, Dolde D, Hu TX, Jones TJ, Gruis DF, Obukosia S, Wambugu F, Albertsen MC (2016) Elevated vitamin E content improves all-trans β-carotene accumulation and stability in biofortified sorghum. Proc Natl Acad Sci U S A 113:11040–11045.  https://doi.org/10.1073/pnas.1605689113 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chen DF, Chen HW, Zhang LH, Shi XL, Chen XW (2014) Tocopherol-deficient rice plants display increased sensitivity to photooxidative stress. Planta 239:1351–1362.  https://doi.org/10.1007/s00425-014-2064-8 CrossRefPubMedGoogle Scholar
  17. Chen J, Katz LH, Munoz NM, Gu S, Shin JH, Jogunoori WS, Lee MH, Belkin MD, Kim SB, White JC, Andricovich J, Tzatsos A, Li S, Kim SS, Shetty K, Mishra B, Rashid A, Lee JS, Mishra L (2016) Vitamin D deficiency promotes liver tumor growth in transforming growth factor-β/smad3-deficient mice through wnt and toll-like receptor 7 pathway modulation. Sci Rep 6:1–15.  https://doi.org/10.1038/srep30217 CrossRefGoogle Scholar
  18. Chen CY, Kao AL, Tsai ZC, Shen YM, Kao PH, Ng IS, Chang JS (2017) Expression of synthetic phytoene synthase gene to enhance beta-carotene production in Scenedesmus sp. CPC2. Biotechnol J 12:1–7.  https://doi.org/10.1002/biot.201700204 CrossRefGoogle Scholar
  19. Christaki E, Bonos E, Giannenas I, Florou-Paneri P (2013) Functional properties of carotenoids originating from algae. J Sci Food Agric 93:5–11.  https://doi.org/10.1002/jsfa.5902 CrossRefPubMedGoogle Scholar
  20. Conaway HH, Henning P, Lerner UH (2013) Vitamin a metabolism, action, and role in skeletal homeostasis. Endocr Rev 34:766–797.  https://doi.org/10.1210/er.2012-1071 CrossRefPubMedGoogle Scholar
  21. Cui SX, Lv XQ, Wu YK, Li JH, Du GC, Ledesma-Amaro R, Liu L (2019) Engineering a bifunctional Phr60-Rap60-Spo0A quorum-sensing molecular switch for dynamic fine-tuning of Menaquinone-7 synthesis in Bacillus subtilis. ACS Synth Biol.  https://doi.org/10.1021/acssynbio.9b00140 CrossRefGoogle Scholar
  22. Cutolo M, Otsa K, Uprus M, Paolino S, Seriolo B (2007) Vitamin D in rheumatoid arthritis. Autoimmun Rev 7:59–64.  https://doi.org/10.1016/j.autrev.2007.07.001 CrossRefPubMedGoogle Scholar
  23. Daines AM, Payne RJ, Humphries ME (2003) The synthesis of naturally occurring vitamin K and vitamin K analogues. Curr Org Chem 7:1625–1634CrossRefGoogle Scholar
  24. Damborsky J, Brezovsky J (2014) Computational tools for designing and engineering enzymes. Curr Opin Chem Biol 19:8–16.  https://doi.org/10.1016/j.cbpa.2013.12.003 CrossRefPubMedGoogle Scholar
  25. DellaPenna D, Last RL (2006) Progress in the dissection and manipulation of plant vitamin E biosynthesis. Physiol Plant 126:356–368.  https://doi.org/10.1111/j.1399-3054.2005.00611.x CrossRefGoogle Scholar
  26. Ebrahiminezhad A, Varma V, Yang S, Berenjian A (2016) Magnetic immobilization of Bacillus subtilis natto cells for menaquinone-7 fermentation. Appl Microbiol Biotechnol 100:173–180.  https://doi.org/10.1007/s00253-015-6977-3 CrossRefGoogle Scholar
  27. Espinoza A, San Martín A, López-Climent M, Ruiz-Lara S, Gómez-Cadenas A, Casaretto JA (2013) Engineered drought-induced biosynthesis of α-tocopherol alleviates stress-induced leaf damage in tobacco. J Plant Physiol 170:1285–1294.  https://doi.org/10.1016/j.jplph.2013.04.004 CrossRefPubMedGoogle Scholar
  28. Falk J, Munne-Bosch S (2010) Tocochromanol functions in plants: antioxidation and beyond. J Exp Bot 61:1549–1566.  https://doi.org/10.1093/jxb/erq030 CrossRefPubMedGoogle Scholar
  29. Farré G, Sudhakar D, Naqvi S, Sandmann G, Christou P, Capell T, Zhu C (2012) Transgenic rice grains expressing a heterologous ρ-hydroxyphenylpyruvate dioxygenase shift tocopherol synthesis from the γ to the a isoform without increasing absolute tocopherol levels. Transgenic Res 21:1093–1097.  https://doi.org/10.1007/s11248-012-9601-7 CrossRefPubMedGoogle Scholar
  30. Fujii Y, Kabumoto H, Nishimura K, Fujii T, Yanai S, Takeda K, Tamura N, Arisawa A, Tamura T (2009) Purification, characterization, and directed evolution study of a vitamin D3 hydroxylase from Pseudonocardia autotrophica. Biochem Biophys Res Commun 385:170–175.  https://doi.org/10.1016/j.bbrc.2009.05.033 CrossRefPubMedGoogle Scholar
  31. Gao S, Tong Y, Zhu L, Ge M, Zhang Y, Chen D, Jiang Y, Yang S (2017) Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous beta-carotene production. Metab Eng 41:192–201.  https://doi.org/10.1016/j.ymben.2017.04.004 CrossRefPubMedGoogle Scholar
  32. Geleijnse JM, Vermeer C, Grobbee DE, Schurgers LJ (2004) Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: the Rotterdam study. J Nutr 134:3100–3105.  https://doi.org/10.1093/jn/134.11.3100 CrossRefPubMedGoogle Scholar
  33. Goiris K, Van Colen W, Wilches I, León-Tamariz F, De Cooman L, Muylaert K (2015) Impact of nutrient stress on antioxidant production in three species of microalgae. Algal Res 7:51–57.  https://doi.org/10.1016/j.algal.2014.12.002 CrossRefGoogle Scholar
  34. Hanson MG, Ozenci V, Carlsten MC, Glimelius BL, Frodin JE, Masucci G, Malmberg KJ, Kiessling RV (2007) A short-term dietary supplementation with high doses of vitamin E increases NK cell cytolytic activity in advanced colorectal cancer patients. Cancer Immunol Immunother 56:973–984.  https://doi.org/10.1007/s00262-006-0261-4 CrossRefPubMedGoogle Scholar
  35. Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sust Energ Rev 14:1037–1047.  https://doi.org/10.1016/j.rser.2009.11.004 CrossRefGoogle Scholar
  36. Haubner N, Sylvander P, Vuori K, Snoeijs P (2014) Abiotic stress modifies the synthesis of alpha-tocopherol and beta-carotene in phytoplankton species. J Phycol 50:753–759.  https://doi.org/10.1111/jpy.12198 CrossRefPubMedGoogle Scholar
  37. Herbers K (2003) Vitamin production in transgenic plants. J Plant Physiol 160:821–829.  https://doi.org/10.1078/0176-1617-01024 CrossRefPubMedGoogle Scholar
  38. Huang W, Lin Y, He M, Gong Y, Huang J (2018) Induced high-yield production of zeaxanthin, lutein, and beta-carotene by a mutant of Chlorella zofingiensis. J Agric Food Chem 66:891–897.  https://doi.org/10.1021/acs.jafc.7b05400 CrossRefPubMedGoogle Scholar
  39. Imoto N, Nishioka T, Tamura T (2011) Permeabilization induced by lipid II-targeting lantibiotic nisin and its effect on the bioconversion of vitamin D3 to 25-hydroxyvitamin D3 by Rhodococcus erythropolis. Biochem Biophys Res Commun 405:393–398.  https://doi.org/10.1016/j.bbrc.2011.01.038 CrossRefPubMedGoogle Scholar
  40. Janke TK, Krupinska K (1997) Isolation of cDNA clones for genes showing enhanced expression in barley leaves during dark-induced senescence as well as during senescence under field conditions. Planta 203:332–340.  https://doi.org/10.1007/s004250050199 CrossRefGoogle Scholar
  41. Jason J, Archibald LK, Nwanyanwu OC, Sowell AL, Buchanan I, Larned J, Bell M, Kazembe PN, Dobbie H, Jarvis WR (2002) Vitamin A levels and immunity in humans. Clin Diagn Lab Immunol 9:616–621.  https://doi.org/10.1128/cdli.9.3.616-621.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Jeschek M, Gerngross D, Panke S (2016) Rationally reduced libraries for combinatorial pathway optimization minimizing experimental effort. Nat Commun 7:1–10.  https://doi.org/10.1038/ncomms11163 CrossRefGoogle Scholar
  43. Jiang J, Jia H, Feng G, Wang Z, Li J, Gao H, Wang X (2016) Overexpression of Medicago sativa TMT elevates the alpha-tocopherol content in Arabidopsis seeds, alfalfa leaves, and delays dark-induced leaf senescence. Plant Sci 249:93–104.  https://doi.org/10.1016/j.plantsci.2016.05.004 CrossRefPubMedGoogle Scholar
  44. Jin S, Daniell H (2014) Expression of γ-tocopherol methyltransferase in chloroplasts in massive proliferation of the inner envelope membrane and decreases susceptibility to salt and metal-induced oxidative stresses by reducing reactive oxygen species. Plant Biotechnol J 12:1274–1285.  https://doi.org/10.1111/pbi.12224 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Jones G (2007) Expanding role for vitamin D in chronic kidney disease: importance of blood 25-OH-D levels and extra-renal 1alpha-hydroxylase in the classical and nonclassical actions of 1alpha,25-dihydroxyvitamin D(3). Semin Dial 20:316–324.  https://doi.org/10.1111/j.1525-139X.2007.00302.x CrossRefPubMedGoogle Scholar
  46. Kato S, Takaichi S, Ishikawa T, Asahina M, Takahashi S, Shinomura T (2016) Identification and functional analysis of the geranylgeranyl pyrophosphate synthase gene (crtE) and phytoene synthase gene (crtB) for carotenoid biosynthesis in Euglena gracilis. BMC Plant Biol 16:1–12.  https://doi.org/10.1186/s12870-015-0698-8 CrossRefGoogle Scholar
  47. Kelly FJ, Lee R, Mudway IS (2004) Inter- and intra-individual vitamin E uptake in healthy subjects is highly repeatable across a wide supplementation dose range. Ann N Y Acad Sci 1031:22–39.  https://doi.org/10.1196/annals.1331.003 CrossRefPubMedGoogle Scholar
  48. Knutson M, Wessling-Resnick M (2003) Iron metabolism in the reticuloendothelial system. Crit Rev Biochem Mol Biol 38:61–88.  https://doi.org/10.1080/713609210 CrossRefPubMedGoogle Scholar
  49. Larroude M, Celinska E, Back A, Thomas S, Nicaud JM (2018) A synthetic biology approach to transform Yarrowia lipolytica into a competitive biotechnological producer of beta-carotene. Biotechnol Bioeng 115:464–472.  https://doi.org/10.1002/bit.26473 CrossRefPubMedGoogle Scholar
  50. Leal JY, Castejon HV, Romero T, Ortega P, Gomez G, Amaya D, Estevez J (2006) Serum levels of interferon-gamma and interleukine-10 in anemic children with vitamin A deficiency. Arch Latinoam Nutr 56:329–334PubMedGoogle Scholar
  51. Lee YL, Chuang YC, Su HM, Wu FS (2013) Freeze-dried microalgae of Nannochloropsis oculata improve soybean oil's oxidative stability. Appl Microbiol Biotechnol 97:9675–9683.  https://doi.org/10.1007/s00253-013-5183-4 CrossRefPubMedGoogle Scholar
  52. Levac D, Cazares P, Yu F, De Luca V (2016) A picrinine N-methyltransferase belongs to a new family of gamma-tocopherol-like methyltransferases found in medicinal plants that make biologically active monoterpenoid indole alkaloids. Plant Physiol 170:1935–1944.  https://doi.org/10.1104/pp.15.01813 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Li Y, Wang G, Hou R, Zhou Y, Gong R, Sun X, Tang K (2011) Engineering tocopherol biosynthetic pathway in lettuce. Biol Plant 55:453–460CrossRefGoogle Scholar
  54. Li L, Yang Y, Xu Q, Owsiany K, Welsch R, Chitchumroonchokchai C, Lu S, Van Eck J, Deng XX, Failla M, Thannhauser TW (2012) The Or gene enhances carotenoid accumulation and stability during post-harvest storage of potato tubers. Mol Plant 5:339–352.  https://doi.org/10.1093/mp/ssr099 CrossRefPubMedGoogle Scholar
  55. Li L, Chen J, Jiang Y (2019) The association between vitamin D level and Sjogren’s syndrome: a meta-analysis. Int J Rheum Dis 22:532–533.  https://doi.org/10.1111/1756-185x.13474 CrossRefPubMedGoogle Scholar
  56. Liu L, Li Y, Zhu Y, Du G, Chen J (2007) Redistribution of carbon flux in Torulopsis glabrata by altering vitamin and calcium level. Metab Eng 9:21–29.  https://doi.org/10.1016/j.ymben.2006.07.007 CrossRefPubMedGoogle Scholar
  57. Lu D, Chen J, Jin J (2014) Vitamin D status and risk of non-Hodgkin lymphoma: a meta-analysis. Cancer Causes Control 25:1553–1563.  https://doi.org/10.1007/s10552-014-0459-2 CrossRefPubMedGoogle Scholar
  58. Ma BX, Ke X, Tang XL, Zheng RC, Zheng YG (2018) Rate-limiting steps in the Saccharomyces cerevisiae ergosterol pathway: towards improved ergosta-5,7-dien-3β-ol accumulation by metabolic engineering. World J Microbiol Biotechnol 34:1–12.  https://doi.org/10.1007/s11274-018-2440-9 CrossRefGoogle Scholar
  59. Ma Y, McClure DD, Somerville M, Proschogo N, Dehghani F, Kavanagh J, Coleman N (2019) Metabolic engineering of the MEP pathway in Bacillus subtilis for increased biosynthesis of menaquinone-7. ACS Synth Biol.  https://doi.org/10.1021/acssynbio.9b00077 CrossRefGoogle Scholar
  60. Mahanama R, Berenjian A, Valtchev P, Talbot A, Biffin R, Regtop H, Dehghani F, Kavanagh JM (2011) Enhanced production of menaquinone-7 via solid substrate fermentation from Bacillus subtilis. Int J Food Eng 7:1–23.  https://doi.org/10.2202/1556-3758.2314 CrossRefGoogle Scholar
  61. Mahdinia E, Demirci A (2018) Implementation of fed-batch strategies for vitamin K (menaquinone-7) production by Bacillus subtilis natto in biofilm reactors. Appl Microbiol Biotechnol 102:9147–9157.  https://doi.org/10.1007/s00253-018-9340-7 CrossRefPubMedGoogle Scholar
  62. Mahdinia E, Demirci A (2019) Biofilm reactors as a promising method for vitamin K (menaquinone-7) production. Appl Microbiol Biotechnol 103:5583–5592.  https://doi.org/10.1007/s00253-019-09913-w CrossRefPubMedGoogle Scholar
  63. Mata-Gómez LC, Montañez JC, Méndez-Zavala A, Aguilar CN (2014) Biotechnological production of carotenoids by yeasts: an overview. Microb Cell Factories 13:1–11.  https://doi.org/10.1186/1475-2859-13-12 CrossRefGoogle Scholar
  64. Matheu V, Back O, Mondoc E, Issazadeh-Navikas S (2003) Dual effects of vitamin D-induced alteration of TH1/TH2 cytokine expression: enhancing IgE production and decreasing airway eosinophilia in murine allergic airway disease. J Allergy Clin Immunol 112:585–592.  https://doi.org/10.1016/S0091-6749(03)01855-4 CrossRefPubMedGoogle Scholar
  65. Montano Velazquez BB, Jauregui-Renaud K, Banuelos Arias Adel C, Ayala JC, Martinez MD, Campillo Navarrete R, Rosalia IS, Salazar Mdel R, Serrano HA, Mondragon AO, Perez RL (2006) Vitamin E effects on nasal symptoms and serum specific IgE levels in patients with perennial allergic rhinitis. Ann Allergy Asthma Immunol 96:45–50.  https://doi.org/10.1016/S1081-1206(10)61039-3 CrossRefPubMedGoogle Scholar
  66. Nahlik J, Hrncirik P, Mares J, Rychtera M, Kent CA (2017) Towards the design of an optimal strategy for the production of ergosterol from Saccharomyces cerevisiae yeasts. Biotechnol Prog 33:838–848.  https://doi.org/10.1002/btpr.2436 CrossRefPubMedGoogle Scholar
  67. Ogbonna JC (2009) Microbiological production of tocopherols: current state and prospects. Appl Microbiol Biotechnol 84:217–225.  https://doi.org/10.1007/s00253-009-2104-7 CrossRefPubMedGoogle Scholar
  68. Orlando P, Silvestri S, Marcheggiani F, Cirilli I, Tiano L (2019) Menaquinone-7 stability of formulations and its relationship with purity profile. Molecules 24:1–16.  https://doi.org/10.3390/molecules24050829 CrossRefGoogle Scholar
  69. Ouyang SQ, He SJ, Liu P, Zhang WK, Zhang JS, Chen SY (2011) The role of tocopherol cyclase in salt stress tolerance of rice (Oryza sativa). Sci China Life Sci 54:181–188.  https://doi.org/10.1007/s11427-011-4138-1 CrossRefPubMedGoogle Scholar
  70. OuYang Q, Tao N, Jing G (2016) Transcriptional profiling analysis of Penicillium digitatum, the causal agent of citrus green mold, unravels an inhibited ergosterol biosynthesis pathway in response to citral. BMC Genomics 17:1–16.  https://doi.org/10.1186/s12864-016-2943-4 CrossRefGoogle Scholar
  71. Paul JY, Khanna H, Kleidon J, Hoang P, Geijskes J, Daniells J, Zaplin E, Rosenberg Y, James A, Mlalazi B (2017) Golden bananas in the field: elevated fruit pro-vitamin A from the expression of a single banana trangene. Plant Biotechnol J 15:520–532.  https://doi.org/10.1111/pbi.12650 CrossRefPubMedGoogle Scholar
  72. Perez-Hernandez N, Aptilon-Duque G, Nostroza-Hernandez MC, Vargas-Alarcon G, Rodriguez-Perez JM, Blachman-Braun R (2016) Vitamin D and its effects on cardiovascular diseases: a comprehensive review. Korean J Intern Med 31:1018–1029.  https://doi.org/10.3904/kjim.2015.224 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Pilz S, Zittermann A, Trummer C, Theiler-Schwetz V, Lerchbaum E, Keppel MH, Grubler MR, Marz W, Pandis M (2019) Vitamin D testing and treatment: a narrative review of current evidence. Endocr Connect 8:27–43.  https://doi.org/10.1530/EC-18-0432 CrossRefGoogle Scholar
  74. Pons E, Alquézar B, Rodríguez A, Martorell P, Genovés S, Ramón D, Rodrigo MJ, Zacarías L, Peña L (2014) Metabolic engineering of β-carotene in orange fruit increases its in vivo antioxidant properties. Plant Biotechnol J 12:17–27.  https://doi.org/10.1111/pbi.12112 CrossRefPubMedGoogle Scholar
  75. Ramawat KG, Mérillon J-M (2013) Natural products: phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes. SpringerGoogle Scholar
  76. Ruhl R, Garcia A, Schweigert FJ, Worm M (2004) Modulation of cytokine production by low and high retinoid diets in ovalbumin-sensitized mice. Int J Vitam Nutr Res 74:279–284.  https://doi.org/10.1024/0300-9831.74.4.279 CrossRefPubMedGoogle Scholar
  77. Saenge C, Cheirsilp B, Suksaroge TT, Bourtoom T (2011) Potential use of oleaginous red yeast Rhodotorula glutinis for the bioconversion of crude glycerol from biodiesel plant to lipids and carotenoids. Process Biochem 46:210–218.  https://doi.org/10.1016/j.procbio.2010.08.009 CrossRefGoogle Scholar
  78. Saini RK, Keum YS (2017) Progress in microbial carotenoids production. Indian J Microbiol 57:129–130.  https://doi.org/10.1007/s12088-016-0637-x CrossRefPubMedPubMedCentralGoogle Scholar
  79. Sakaki T, Sugimoto H, Hayashi K, Yasuda K, Munetsuna E, Kamakura M, Ikushiro S, Shiro Y (2011) Bioconversion of vitamin D to its active form by bacterial or mammalian cytochrome P450. Biochim Biophys Acta 1814:249–256.  https://doi.org/10.1016/j.bbapap.2010.07.014 CrossRefPubMedGoogle Scholar
  80. Savastano S, Barrea L, Savanelli MC, Nappi F, Di Somma C, Orio F, Colao A (2017) Low vitamin D status and obesity: role of nutritionist. Rev Endocr Metab Disord 18:215–225.  https://doi.org/10.1007/s11154-017-9410-7 CrossRefPubMedGoogle Scholar
  81. Schurgers LJ, Vermeer C (2000) Determination of phylloquinone and menaquinones in food. Haemostasis 30:298–307.  https://doi.org/10.1016/j.foodchem.2018.09.136 CrossRefPubMedGoogle Scholar
  82. Shearer MJ, Newman P (2008) Metabolism and cell biology of vitamin K. J Thromb Haemost 100:530–547.  https://doi.org/10.1160/TH08-03-0147 CrossRefGoogle Scholar
  83. Singh R, Puri A, Panda BP (2015) Development of menaquinone-7 enriched nutraceutical: inside into medium engineering and process modeling. J Food Sci Technol 52:5212–5219.  https://doi.org/10.1007/s13197-014-1600-7 CrossRefPubMedGoogle Scholar
  84. Sivakumar G, Jeong K, Lay JO (2014) Biomass and RRR-alpha-tocopherol production in Stichococcus bacillaris strain siva2011 in a balloon bioreactor. Microb Cell Factories 13:1–8.  https://doi.org/10.1186/1475-2859-13-79 CrossRefGoogle Scholar
  85. Suh W (2012) High isoprenoid flux Escherichia coli as a host for carotenoids production. Methods Mol Biol 834:49–62.  https://doi.org/10.1007/978-1-61779-483-4_4 CrossRefPubMedGoogle Scholar
  86. Sun Y, Sun L, Shang F, Yan G (2016) Enhanced production of β-carotene in recombinant Saccharomyces cerevisiae by inverse metabolic engineering with supplementation of unsaturated fatty acids. Process Biochem 51:568–577.  https://doi.org/10.1016/j.procbio.2016.02.004 CrossRefGoogle Scholar
  87. Tanaka H, Yabuta Y, Tamoi M, Tanabe N, Shigeoka S (2015) Generation of transgenic tobacco plants with enhanced tocotrienol levels through the ectopic expression of rice homogentisate geranylgeranyl transferase. Plant Biotechnol J 1-6.  https://doi.org/10.5511/plantbiotechnology.15.0702a
  88. Tarento TDC, McClure DD, Talbot AM, Regtop HL, Biffin JR, Valtchev P, Dehghani F, Kavanagh JM (2018) A potential biotechnological process for the sustainable production of vitamin K1. Crit Rev Biotechnol 39:1–19.  https://doi.org/10.1080/07388551.2018.1474168 CrossRefGoogle Scholar
  89. Taskin M, Sisman T, Erdal S, Kurbanoglu EB (2011) Use of waste chicken feathers as peptone for production of carotenoids in submerged culture of Rhodotorula glutinis MT-5. Eur Food Res Technol 233:657–665.  https://doi.org/10.1007/s00217-011-1561-2 CrossRefGoogle Scholar
  90. Vinutha T, Maheswari C, Bansal N, Prashat GR, Krishnan V, Kumari S, Dahuja A, Sachdev A, Rai R (2015) Expression analysis of γ-tocopherol methyl transferase genes and α-tocopherol content in developing seeds of soybean. J Biosci Bioeng 52:267–273Google Scholar
  91. Wang C, Zeng J, Li Y, Hu W, Chen L, Miao Y, Deng P, Yuan C, Ma C, Chen X, Zang M, Wang Q, Li K, Chang J, Wang Y, Yang G, He G (2014) Enrichment of provitamin A content in wheat (Triticum aestivum L.) by introduction of the bacterial carotenoid biosynthetic genes CrtB and CrtI. J Exp Bot 65:2545–2556.  https://doi.org/10.1093/jxb/eru138 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Wang XQ, Yoon MY, He Q, Kim TS, Tong W, Choi BW, Lee YS, Park YJ (2015) Natural variations in OsgammaTMT contribute to diversity of the alpha-tocopherol content in rice. Mol Gen Genomics 290:2121–2135.  https://doi.org/10.1007/s00438-015-1059-x CrossRefGoogle Scholar
  93. Wang PP, Zeng WZ, Xu S, Du GC, Zhou JW, Chen J (2018) Current challenges facing one-step production of l-ascorbic acid. Biotechnol Adv 36:1882–1899.  https://doi.org/10.1016/j.biotechadv.2018.07.006 CrossRefPubMedGoogle Scholar
  94. Wang PP, Zeng WZ, Du GC, Zhou JW, Chen J (2019) Systematic characterization of sorbose/sorbosone dehydrogenases and sorbosone dehydrogenases from Ketogulonicigenium vulgare WSH-001. J Biotechnol 301:24–34.  https://doi.org/10.1016/j.jbiotec.2019.05.010 CrossRefPubMedGoogle Scholar
  95. Welsch R, Arango J, Bär C, Salazar B, Al-Babili S, Beltrán J, Chavarriaga P, Ceballos H, Tohme J, Beyer P (2010) Provitamin A accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene. Plant Cell 22:3348–3356.  https://doi.org/10.1105/tpc.110.077560 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Widhalm JR, Ducluzeau AL, Buller NE, Elowsky CG, Olsen LJ, Basset GJ (2012) Phylloquinone (vitamin K(1)) biosynthesis in plants: two peroxisomal thioesterases of Lactobacillales origin hydrolyze 1,4-dihydroxy-2-naphthoyl-CoA. Plant J 71:205–215.  https://doi.org/10.1111/j.1365-313X.2012.04972.x CrossRefPubMedGoogle Scholar
  97. Wittke A, Weaver V, Mahon BD, August A, Cantorna MT (2004) Vitamin D receptor-deficient mice fail to develop experimental allergic asthma. J Immunol 173:3432–3436.  https://doi.org/10.4049/jimmunol.173.5.3432 CrossRefPubMedGoogle Scholar
  98. Wu WJ, Ahn BY (2011) Improved menaquinone (Vitamin K2) production in cheonggukjang by optimization of the fermentation conditions. Food Sci Biotechnol 20:1585–1591.  https://doi.org/10.1007/s10068-011-0219-y CrossRefGoogle Scholar
  99. Wu CH, Chou CC (2009) Enhancement of aglycone, vitamin K2 and superoxide dismutase activity of black soybean through fermentation with Bacillus subtilis BCRC 14715 at different temperatures. J Agric Food Chem 57:10695–10700.  https://doi.org/10.1021/jf902752t CrossRefPubMedGoogle Scholar
  100. Wu T, Ye L, Zhao D, Li S, Li Q, Zhang B, Bi C, Zhang X (2017) Membrane engineering-a novel strategy to enhance the production and accumulation of beta-carotene in Escherichia coli. Metab Eng 43:85–91.  https://doi.org/10.1016/j.ymben.2017.07.001 CrossRefPubMedGoogle Scholar
  101. Xie W, Liu M, Lv X, Lu W, Gu J, Yu H (2014) Construction of a controllable β-carotene biosynthetic pathway by decentralized assembly strategy in Saccharomyces cerevisiae. Biotechnol Bioeng 111:125–133.  https://doi.org/10.1002/bit.25002 CrossRefPubMedGoogle Scholar
  102. Xie W, Ye L, Lv X, Xu H, Yu H (2015) Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae. Metab Eng 28:8–18.  https://doi.org/10.1016/j.ymben.2014.11.007 CrossRefPubMedGoogle Scholar
  103. Xu Z (2008) Comparison of extraction methods for quantifying vitamin E from animal tissues. Bioresour Technol 99:8705–8709.  https://doi.org/10.1016/j.biortech.2008.04.065 CrossRefPubMedGoogle Scholar
  104. Xu J, Yang J, Chen J, Luo Q, Zhang Q, Zhang H (2017) Vitamin D alleviates lipopolysaccharideinduced acute lung injury via regulation of the reninangiotensin system. Mol Med Rep 16:7432–7438.  https://doi.org/10.3892/mmr.2017.7546 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Yan G, Wen K, Duan C (2012) Enhancement of β-carotene production by over-expression of HMG-CoA reductase coupled with addition of ergosterol biosynthesis inhibitors in recombinant Saccharomyces cerevisiae. Curr Microbiol 64:159–163.  https://doi.org/10.1007/s00284-011-0044-9 CrossRefPubMedGoogle Scholar
  106. Yang S, Cao Y, Sun L, Li C, Lin X, Cai Z, Zhang G, Song H (2018) Modular pathway engineering of Bacillus subtilis to promote de novo biosynthesis of menaquinone-7. ACS Synth Biol 8:70–81.  https://doi.org/10.1021/acssynbio.8b00258 CrossRefPubMedGoogle Scholar
  107. Yasutake Y, Nishioka T, Imoto N, Tamura T (2013) A single mutation at the ferredoxin binding site of P450 Vdh enables efficient biocatalytic production of 25-hydroxyvitamin D(3). Chembiochem 14:2284–2291.  https://doi.org/10.1002/cbic.201300386 CrossRefPubMedGoogle Scholar
  108. Yoon SH, Kim JE, Lee SH, Park HM, Choi MS, Kim JY, Lee SH, Shin YC, Keasling JD, Kim SW (2007) Engineering the lycopene synthetic pathway in E. coli by comparison of the carotenoid genes of Pantoea agglomerans and Pantoea ananatis. Appl Microbiol Biotechnol 74:131–139.  https://doi.org/10.1007/s00253-006-0623-z CrossRefPubMedGoogle Scholar
  109. Yoon SH, Lee SH, Das A, Ryu HK, Jang HJ, Kim JY, Oh DK, Keasling JD, Kim SW (2009) Combinatorial expression of bacterial whole mevalonate pathway for the production of beta-carotene in E. coli. J Biotechnol 140:218–226.  https://doi.org/10.1016/j.jbiotec.2009.01.008 CrossRefPubMedGoogle Scholar
  110. Yu R, Sun J, Zheng Z, Chen J, Fan R, Liang X, Zhu Y, Liu Y, Shen S, Hou J (2015) Association between vitamin D level and viral load or fibrosis stage in chronic hepatitis B patients from Southern China. J Gastroenterol Hepatol 30:566–574.  https://doi.org/10.1111/jgh.12783 CrossRefPubMedGoogle Scholar
  111. Zanghellini A (2014) De novo computational enzyme design. Curr Opin Biotechnol 29:132–138.  https://doi.org/10.1016/j.copbio.2014.03.002 CrossRefPubMedGoogle Scholar
  112. Zeng J, Wang X, Miao Y, Wang C, Zang M, Chen X, Li M, Li X, Wang Q, Li K (2015) Metabolic engineering of wheat provitamin A by simultaneously overexpressing CrtB and silencing carotenoid hydroxylase (TaHYD). J Agric Food Chem 63:9083–9092.  https://doi.org/10.1021/acs.jafc.5b04279 CrossRefPubMedGoogle Scholar
  113. Zhao J, Li Q, Sun T, Zhu X, Xu H, Tang J, Zhang X, Ma Y (2013) Engineering central metabolic modules of Escherichia coli for improving beta-carotene production. Metab Eng 17:42–50.  https://doi.org/10.1016/j.ymben.2013.02.002 CrossRefPubMedGoogle Scholar
  114. Zhou J, Du G, Chen J (2012) Metabolic engineering of microorganisms for vitamin C production. Subcell Biochem 64:241–259.  https://doi.org/10.1007/978-94-007-5055-5_12 CrossRefPubMedGoogle Scholar
  115. Zittermann A, Ernst JB, Gummert JF, Borgermann J (2014) Vitamin D supplementation, body weight and human serum 25-hydroxyvitamin D response: a systematic review. Eur J Nutr 53:367–374.  https://doi.org/10.1007/s00394-013-0634-3 CrossRefPubMedGoogle Scholar
  116. Zou W, Liu L, Zhang J, Yang H, Zhou M, Hua Q, Chen J (2012) Reconstruction and analysis of a genome-scale metabolic model of the vitamin C producing industrial strain Ketogulonicigenium vulgare WSH-001. J Biotechnol 161:42–48.  https://doi.org/10.1016/j.jbiotec.2012.05.015 CrossRefPubMedGoogle Scholar
  117. Zou W, Liu L, Chen J (2013) Structure, mechanism and regulation of an artificial microbial ecosystem for vitamin C production. Crit Rev Microbiol 39:247–255.  https://doi.org/10.3109/1040841x.2012.706250 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of EducationJiangnan UniversityWuxiChina
  2. 2.Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan UniversityWuxiChina

Personalised recommendations