Advertisement

Applied Microbiology and Biotechnology

, Volume 103, Issue 21–22, pp 9057–9066 | Cite as

Glutamine-induced filamentous cells of Pseudomonas mediterranea CFBP-5447T as producers of PHAs

  • Maria Giovanna Rizzo
  • Marco S. Nicolò
  • Domenico FrancoEmail author
  • Laura M. De Plano
  • Valeria Chines
  • Francesca Moscato
  • Giada Crea
  • Concetta Gugliandolo
  • Salvatore P. P. Guglielmino
Applied microbial and cell physiology

Abstract

Polyhydroxyalkanoates (PHAs) are considerable biopolymers that have gained an increasing biotechnological interest in different applications, although their industrial production presents several limitations. Filamentous bacterial cells could represent a possible strategy to increase PHA yield, since more abundant PHA inclusions can be stored in elongated than in rod-shaped cells. At first, we determined the optimal batch culture conditions to induce filamentation in Pseudomonas mediterranea CFBP-5447T, using glutamine, glycerol, glucose, and sodium octanoate, as the sole carbon source, at low- (100 rpm) or high- (250 rpm) shaking speeds. Successively, a fermentative process was set up using glutamine in a co-metabolic strategy with glycerol, and the PHAs production was compared in rod-shaped and filamentous cells. High glutamine concentrations (from 28 to 56 mM) were able to induce alone filamentation, whereas at lower glutamine concentrations (5–10 mM), the shaking speeds became critical to allow or not filamentous phenotype. PHA granule production was higher in filamentous than in rod-shaped cells, when glycerol (46.6 mM) was added to glutamine (5 mM) in co-metabolism, and fermentation was performed at a low-shaking speed. After extraction and precipitation, PHA yield was about two times higher in filamentous than that rod-shaped cells. Our results provide new insights into filament-inducing conditions and indicate a potential use of filamentous P. mediterranea CFBP-5447T cells to increase PHA yield. These findings could have great advantages in PHAs recovering during downstream processes, since the harvesting of elongated cells is much less time-consuming and energy expensive than required with rod-shaped cells.

Keywords

Pseudomonas mediterranea Glutamine Filamentous cells Medium-chain-length polyhydroxyalkanoates (mcl-PHAs) 

Notes

Acknowledgments

The strain Pseudomonas mediterranea CFBP-5447T was a kind gift by Science and Technology Park of Sicily (PSTS). We express our gratitude to Professor Miguel Martinez of Universidad de Concepción (Chile) for providing valuable suggestions and discussions.

Funding information

This work has been partially funded by the Italian Ministry of University and Research (MIUR) by means of the National Program PON R&C 2007–2013, Project “PolyBioPlast – Technologies and processes for the production of diversely functionalized sheets based on microbial biopolymers and biosurfactants (PON01_1377)”.

Compliance with ethical standards

The presented research did not involve studies with human participants or animal subjects or recombinant DNA.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Beaufay F, De Bolle X, Hallez R (2016) Metabolic control of cell division in α-proteobacteria by a NAD-dependent glutamate dehydrogenase. Commun Integr Biol 9(1):e1125052.  https://doi.org/10.1080/19420889.2015.1125052 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Clark G (1981) Staining procedures. In: Clark G (ed) Biological Stain Commission (U.S.), 4th edn. Williams & Wilkins, BaltimoreGoogle Scholar
  3. Crabbé A, Leroy B, Wattiez R, Aertsen A, Leys N, Cornelis P, Van Houdt R (2012) Differential proteomics and physiology of Pseudomonas putida KT2440 under filament-inducing conditions. BMC Microbiol 12:282–289.  https://doi.org/10.1186/1471-2180-12-282 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Degelau A, Scheper T, Bailey JE, Guske C (1995) Fluorometric measurement of poly-b-hydroxybutyrate in Alcaligenes eutrophus by flow cytometry and spectrofluorometry. Appl Microbiol Biotechnol 42:653–657.  https://doi.org/10.1007/BF00171939 CrossRefGoogle Scholar
  5. Dinamarca MA, Aranda-Olmedo I, Puyet A, Rojo F (2003) Expression of the Pseudomonas putida OCT plasmid alkane degradation pathway is modulated by two different global control signals evidence from continuous cultures. J Bacteriol 185:4772–4778.  https://doi.org/10.1128/jb.185.16.4772-4778.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Fonseca P, Moreno R, Rojo F (2013) Pseudomonas putida growing at low temperature shows increased levels of CrcZ and CrcY sRNAs, leading to reduced Crc-dependent catabolite repression. Environ Microbiol 15(1):24–35.  https://doi.org/10.1111/j.1462-2920.2012.02708.x CrossRefPubMedGoogle Scholar
  7. Fredborg M, Rosenvinge FS, Spillum E, Kroghsbo S, Wang M, Sondergaard TE (2015) Automated image analysis for quantification of filamentous bacteria. BMC Microbiol 15:255–258.  https://doi.org/10.1186/s12866-015-0583-5 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Galán B, Dinjaski N, Maestro B, de Eugenio LI, Escapa IF, Sanz JM, García JL, Prieto MA (2011) Nucleoid-associated PhaFphasin drives intracellular location and segregation of polyhydroxyalkanoate granules in Pseudomonas putida KT2442. Mol Microbiol 79(2):402–418.  https://doi.org/10.1111/j.1365-2958.2010.07450.x CrossRefPubMedGoogle Scholar
  9. Hüser A, Klöppner U, Röhm KH (1999) Cloning, sequence analysis, and expression of ansB from Pseudomonas fluorescens, encoding periplasmic glutaminase/asparaginase. FEMS Microbiol Lett 178(2):327–335CrossRefGoogle Scholar
  10. Jensen RH, Woolfolk CA (1985) Formation of filaments by Pseudomonas putida. Appl Environ Microbiol 50(2):364–372PubMedPubMedCentralGoogle Scholar
  11. Jiang XR, Chen GQ (2016) Morphology engineering of bacteria for bio-production. Biotechnol Adv 34(4):435–440.  https://doi.org/10.1016/j.biotechadv.2015.12.007 CrossRefPubMedGoogle Scholar
  12. Jiang XR, Wang H, Shen R, Chen GQ (2015) Engineering the bacterial shapes for enhanced inclusion bodies accumulation. Metab Eng 29:227–237.  https://doi.org/10.1016/j.ymben.2015.03.017 CrossRefPubMedGoogle Scholar
  13. Justice SS, Hunstad DA, Cegelski L, Hultgren SJ (2008) Morphological plasticity as a bacterial survival strategy. Nat Rev Microbiol 6(2):162–168.  https://doi.org/10.1038/nrmicro1820 CrossRefPubMedGoogle Scholar
  14. Kadoya R, Matsumoto K, Ooi T (2015) Taguchi S (2015) MtgA deletion-triggered cell enlargement of Escherichia coli for enhanced intracellular polyester accumulation. PLoS One 10(6):e0125163.  https://doi.org/10.1371/journal.pone.0125163 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Licciardello G, Bella P, Devescovi G, Strano CP, Sarris PF, Catara AF, Venturi V, Catara V (2014) Draft genome sequence of Pseudomonas mediterranea strain CFBP 5447T, a producer of filmable medium-chain-length polyhydroxyalkanoates. Genome Announc 2(6):e01260–e01214.  https://doi.org/10.1128/genomeA.01260-14 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Mattick KL, Jorgensen F, Legan JD, Cole MB, Porter J, Lappin-Scott HM, Humphrey TJ (2000) Survival and filamentation of Salmonella entericaserovar Enteritidis PT4 and Salmonella enterica serovar Typhimurium DT104 at low water activity. Appl Environ Microbiol 66(4):1274–1279.  https://doi.org/10.1128/aem.66.4.1274-1279.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Miller C, Thomsen LE, Gaggero C, Mosseri R, Ingmer H, Cohen SN (2004) SOS response induction by ß-lactams and bacterial defense against antibiotic lethality. Science 305(5690):1629–1631.  https://doi.org/10.1126/science.1101630 CrossRefPubMedGoogle Scholar
  18. Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymer and composites: an overview. Macromol Mater Eng 276/277:1–24.  https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W
  19. Morales G, Ugidos A, Rojo F (2006) Inactivation of the Pseudomonas putida cytochrome o ubiquinol oxidase leads to a significant change in the transcriptome and to increased expression of the CIO and cbb3-1 terminal oxidases. Environ Microbiol 8(10):1764–1774.  https://doi.org/10.1111/j.1462-2920.2006.01061.x CrossRefPubMedGoogle Scholar
  20. Nicolò MS, Franco D, Camarda V, Gullace R, Rizzo MG, Fragalà M, Licciardello G, Catara AF, Guglielmino SPP (2014) Integrated microbial process for bioconversion of crude glycerol from biodiesel into biosurfactants and PHAs. Chem Eng Trans 38:187–192.  https://doi.org/10.3303/CET1438032 CrossRefGoogle Scholar
  21. Pappalardo F, Fragalà M, Mineo PG, Damigella A, Catara AF, Palmeri R, Rescifina A (2014) Production of filmable medium-chain-length polyhydroxyalkanoates produced from glycerol by Pseudomonas mediterranea. Int J Biol Macromol 65:89–96.  https://doi.org/10.1016/j.ijbiomac.2014.01.014 CrossRefPubMedGoogle Scholar
  22. Peters V, Rehm BH (2005) In vivo monitoring of PHA granule formation using GFP-labeled PHA synthases. FEMS Microbiol Lett 248:93–100.  https://doi.org/10.1016/j.femsle.2005.05.027 CrossRefPubMedGoogle Scholar
  23. Rizzo MG, Chines V, Franco D, Nicolò MS, Guglielmino SPP (2017) The role of glutamine in Pseudomonas mediterranea in biotechnological processes. N Biotechnol 37(Pt A):144–151.  https://doi.org/10.1016/j.nbt.2016.04.005 CrossRefPubMedGoogle Scholar
  24. Shaw MK (1968) Formation of filaments and synthesis of macromolecules at temperatures below the minimum for growth of Escherichia coli. J Bacteriol 95(1):221–230PubMedPubMedCentralGoogle Scholar
  25. Sicard D, Cecioni S, Iazykov M, Chevolot Y, Matthews SE, Praly JP, Souteyrand E, Imberty A, Vidal S, Phaner-Goutorbe M (2011) AFM investigation of Pseudomonas aeruginosa lectin LecA (PA-IL) filaments induced by multivalent glycoclusters. Chem Commun (Camb) 47(33):9483–9485.  https://doi.org/10.1039/c1cc13097h CrossRefGoogle Scholar
  26. Sonawane A, Klöppner U, Derst C, Röhm KH (2003) Utilization of acidic amino acids and their amides by Pseudomonads: role of periplasmic glutaminase-asparaginase. Arch Microbiol 179(3):151–159.  https://doi.org/10.1007/s00203-002-0511-6 CrossRefPubMedGoogle Scholar
  27. Spiekermann P, Rehm BHA, Kalscheuer R, Baumeister D, Steinbüchel A (1999) A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 171:73–80CrossRefGoogle Scholar
  28. Steinberger RE, Allen AR, Hansa HG, Holden PA (2002) Elongation correlates with nutrient deprivation in Pseudomonas aeruginosa-unsaturated biofilms. Microb Ecol 43(4):416–423.  https://doi.org/10.1007/s00248-001-1063-z CrossRefPubMedGoogle Scholar
  29. Steinbuchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219–228.  https://doi.org/10.1111/j.1574-6968.1995.tb07528.x CrossRefGoogle Scholar
  30. Wang Y, Wu H, Jiang X, Chen GQ (2014) Engineering Escherichia coli for enhanced production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in larger cellular space. Metab Eng 25:183–193.  https://doi.org/10.1016/j.ymben.2014.07.010 CrossRefPubMedGoogle Scholar
  31. Yoon MY, Lee K-M, Park Y, Yoon SS (2011) Contribution of cell elongation to the biofilm formation of Pseudomonas aeruginosa during anaerobic respiration. PLoS ONE 6(1):e16105.  https://doi.org/10.1371/journal.pone.0016105 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Maria Giovanna Rizzo
    • 1
  • Marco S. Nicolò
    • 1
  • Domenico Franco
    • 1
    Email author
  • Laura M. De Plano
    • 1
  • Valeria Chines
    • 1
  • Francesca Moscato
    • 1
  • Giada Crea
    • 1
  • Concetta Gugliandolo
    • 1
  • Salvatore P. P. Guglielmino
    • 1
  1. 1.Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaMessinaItaly

Personalised recommendations