Construction and application of an HSP70 promoter-inducible genome editing system in transgenic silkworm to induce resistance to Nosema bombycis

  • Zhanqi Dong
  • Jiangqiong Long
  • Liang Huang
  • Zhigang Hu
  • Peng Chen
  • Nan Hu
  • Ning Zheng
  • Xuhua Huang
  • Cheng LuEmail author
  • Minhui PanEmail author
Applied genetics and molecular biotechnology


The microsporidian Nosema bombycis is an obligate intracellular parasitic fungus that causes devastating disease in sericulture. To date, no efficient biotechnological method to inhibit the proliferation of microspores has been established. Here, we developed a powerful genetic engineering technique involving microsporidia-inducible genome editing in transgenic silkworm that confers resistance to N. bombycis. This system includes an HSP70 promoter-induced expression of the Cas9 protein line and a target BmATAD3A gene line. The double-positive HSP70-Cas9(+)×sgATAD3A(+) lines were obtained by hybridization and activation of the CRISPR/Cas9 system under the condition of microsporidia infection, although it is silenced in uninfected individuals. Genome editing analysis showed that the system could efficiently edit the BmATAD3A gene and induce large deletions. It is notable that the HSP70-induced system could effectively improve the survival rate of transgenic silkworm after microsporidia infection and inhibit the expression of key microsporidia genes. Moreover, no significant developmental differences between the transgenic silkworms infected with microsporidia and normal individuals were observed. In this study, we effectively inhibited microsporidia proliferation in transgenic individuals through disruptive techniques, thereby providing a method for microsporidia treatment and prevention, paving the way for economically advantageous insect breeding.


Microsporidia Silkworm CRISPR/Cas9 Transgenic Inducible genome editing 


Author contributions

Z.D., J.L., and L.H. performed vector cloning, sequencing, cell culturing, and PCR. Z.D., J.L., and Z.H. conducted transgenic injections. N.Z., X.H, Z.H., and J.L. participated in mortality analyses and DNA replication assays. Z.D., M.P., and C.L. conceived the experimental design and participated in data analysis. Z.D., M.P., P.C., and C.L. were involved in the preparation of the manuscript. The final manuscript was reviewed and approved by all authors.

Funding Information

This study was funded by The National Natural Science Foundation of China (Grant Nos. 31902214, 31872427, and 31572466), the China Agriculture Research System (CARS-18), Chongqing Special Postdoctoral Science Foundation (No. XmT2018020), Natural Science Foundation of Chongqing (cstc2019jcyj-msxm2371), and the China Postdoctoral Science Foundation (No. 2018M633309).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any experiments with human participants or animals performed by any of the authors.

Supplementary material

253_2019_10135_MOESM1_ESM.pdf (113 kb)
ESM 1 (PDF 113 kb)


  1. Barakate A, Stephens J (2016) An overview of CRISPR-based tools and their improvements: new opportunities in understanding plant-pathogen interactions for better crop protection. Front Plant Sci 7:765. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bence M, Jankovics F, Lukacsovich T, Erdelyi M (2017) Combining the auxin-inducible degradation system with CRISPR/Cas9-based genome editing for the conditional depletion of endogenous Drosophila melanogaster proteins. FEBS J 284(7):1056–1069. CrossRefPubMedGoogle Scholar
  3. Brown MJF (2017) Microsporidia: an emerging threat to bumblebees? Trends Parasitol 33(10):754–762. CrossRefPubMedGoogle Scholar
  4. Campbell SE, Williams TA, Yousuf A, Soanes DM, Paszkiewicz KH, Williams BA (2013) The genome of Spraguea lophii and the basis of host-microsporidian interactions. PLoS Genet 9(8):e1003676. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cui Y, Yu L (2016) Application of the CRISPR/Cas9 gene editing technique to research on functional genomes of parasites. Parasitol Int 65(6 Pt A):641–644. CrossRefPubMedGoogle Scholar
  6. Didier ES, Maddry JA, Brindley PJ, Stovall ME, Didier PJ (2005) Therapeutic strategies for human microsporidia infections. Expert Rev Anti-Infect Ther 3(3):419–434. CrossRefPubMedGoogle Scholar
  7. Dolgikh VV, Semenov PB (2003) The spore wall and polar tube proteins of the microsporidian Nosema grylli: the major spore wall protein is released before spore extrusion. Tsitologiia 45(3):324–329PubMedGoogle Scholar
  8. Dong ZQ, Chen TT, Zhang J, Hu N, Cao MY, Dong FF, Jiang YM, Chen P, Lu C, Pan MH (2016) Establishment of a highly efficient virus-inducible CRISPR/Cas9 system in insect cells. Antivir Res 130:50–57. CrossRefPubMedGoogle Scholar
  9. Dong ZQ, Hu N, Dong FF, Chen TT, Jiang YM, Chen P, Lu C, Pan MH (2017) Baculovirus LEF-11 hijack host ATPase ATAD3A to promote virus multiplication in Bombyx mori cells. Sci Rep 7:46187. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dong Z, Huang L, Dong F, Hu Z, Qin Q, Long J, Cao M, Chen P, Lu C, Pan MH (2018) Establishment of a baculovirus-inducible CRISPR/Cas9 system for antiviral research in transgenic silkworms. Appl Microbiol Biotechnol 102(21):9255–9265. CrossRefPubMedGoogle Scholar
  11. Feng J, Jing J, Sanchez-Lara PA, Bootwalla MS, Buckley J, Wu N, Yan Y, Chai Y (2016) Generation and characterization of tamoxifen-inducible Pax9-CreER knock-in mice using CRISPR/Cas9. Genesis 54(9):490–496. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Fu Z, He X, Cai S, Liu H, He X, Li M, Lu X (2016) Quantitative PCR for detection of Nosema bombycis in single silkworm eggs and newly hatched larvae. J Microbiol Methods 120:72–78. CrossRefPubMedGoogle Scholar
  13. Han B, Weiss LM (2017) Microsporidia: obligate intracellular pathogens within the fungal kingdom. Microbiol Spectr 5(2).
  14. Horn C, Wimmer EA (2000) A versatile vector set for animal transgenesis. Dev Genes Evol 210(12):630–637CrossRefGoogle Scholar
  15. Huang S, Huang X, Dai S, Wang X, Wang G (2018a) Single-cell Raman spectroscopy reveals microsporidia spore heterogeneity in various insect hosts. Appl Opt 57(30):9189–9194. CrossRefPubMedGoogle Scholar
  16. Huang Y, Chen J, Sun B, Zheng R, Li B, Li Z, Tan Y, Wei J, Pan G, Li C, Zhou Z (2018b) Engineered resistance to Nosema bombycis by in vitro expression of a single-chain antibody in Sf9-III cells. PLoS One 13(2):e0193065. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Ishihara R (1969) The life cycle of Nosema bombycis as revealed in tissue culture cells of Bombyx mori. J Invertebr Pathol 14(3):316–320CrossRefGoogle Scholar
  18. Issi IV, Tokarev Iu S (2002) Impact of microsporidia on hormonal balance in insect hosts. Parazitologiia 36(5):405–421PubMedGoogle Scholar
  19. Ledford H (2017) Geneticists enlist engineered virus and CRISPR to battle citrus disease. Nature 545(7654):277–278. CrossRefPubMedGoogle Scholar
  20. Li HH, Liu G (2017) The application of CRISPR/Cas9 in genome editing of filamentous fungi. Yi Chuan 39(5):355–367. CrossRefPubMedGoogle Scholar
  21. Li W, Evans JD, Huang Q, Rodriguez-Garcia C, Liu J, Hamilton M, Grozinger CM, Webster TC, Su S, Chen YP (2016) Silencing the honey bee (Apis mellifera) naked cuticle gene (nkd) improves host immune function and reduces Nosema ceranae infections. Appl Environ Microbiol 82(22):6779–6787. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Li Z, Pan G, Ma Z, Han B, Sun B, Ni Q, Chen J, Li T, Liu T, Long M, Li C, Zhou Z (2017) Comparative proteomic analysis of differentially expressed proteins in the Bombyx mori fat body during the microsporidia Nosema bombycis infection. J Invertebr Pathol 149:36–43. CrossRefPubMedGoogle Scholar
  23. Liu H, Li M, He X, Cai S, He X, Lu X (2016) Transcriptome sequencing and characterization of ungerminated and germinated spores of Nosema bombycis. Acta Biochim Biophys Sin Shanghai 48(3):246–256. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Liu X, Wu S, Xu J, Sui C, Wei J (2017) Application of CRISPR/Cas9 in plant biology. Acta Pharm Sin B 7(3):292–302. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lu J, Zhao C, Zhao Y, Zhang J, Zhang Y, Chen L, Han Q, Ying Y, Peng S, Ai R, Wang Y (2018) Multimode drug inducible CRISPR/Cas9 devices for transcriptional activation and genome editing. Nucleic Acids Res 46(5):e25. CrossRefPubMedGoogle Scholar
  26. Luo X, Li M, Su B (2016) Application of the genome editing tool CRISPR/Cas9 in non-human primates. Dongwuxue Yanjiu 37(4):214–219. CrossRefPubMedGoogle Scholar
  27. Ma Z, Li C, Pan G, Li Z, Han B, Xu J, Lan X, Chen J, Yang D, Chen Q, Sang Q, Ji X, Li T, Long M, Zhou Z (2013) Genome-wide transcriptional response of silkworm (Bombyx mori) to infection by the microsporidian Nosema bombycis. PLoS One 8(12):e84137. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Martin-Hernandez R, Higes M, Sagastume S, Juarranz A, Dias-Almeida J, Budge GE, Meana A, Boonham N (2017) Microsporidia infection impacts the host cell’s cycle and reduces host cell apoptosis. PLoS One 12(2):e0170183. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Nodvig CS, Nielsen JB, Kogle ME, Mortensen UH (2015) A CRISPR-Cas9 system for genetic engineering of filamentous fungi. PLoS One 10(7):e0133085. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Paldi N, Glick E, Oliva M, Zilberberg Y, Aubin L, Pettis J, Chen Y, Evans JD (2010) Effective gene silencing in a microsporidian parasite associated with honeybee (Apis mellifera) colony declines. Appl Environ Microbiol 76(17):5960–5964. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Pan G, Bao J, Ma Z, Song Y, Han B, Ran M, Li C, Zhou Z (2018) Invertebrate host responses to microsporidia infections. Dev Comp Immunol 83:104–113. CrossRefPubMedGoogle Scholar
  32. Peng L, Pan P, Chen J, Yu X, Wu J, Chen Y (2018) A tetracycline-inducible CRISPR/Cas9 system, targeting two long non-coding RNAs, suppresses the malignant behavior of bladder cancer cells. Oncol Lett 16(4):4309–4316. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Puschnik AS, Majzoub K, Ooi YS, Carette JE (2017) A CRISPR toolbox to study virus-host interactions. Nat Rev Microbiol 15(6):351–364. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Riordan SM, Heruth DP, Zhang LQ, Ye SQ (2015) Application of CRISPR/Cas9 for biomedical discoveries. Cell Biosci 5:33. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Sarfati C, Bourgeois A, Menotti J, Liegeois F, Moyou-Somo R, Delaporte E, Derouin F, Ngole EM, Molina JM (2006) Prevalence of intestinal parasites including microsporidia in human immunodeficiency virus-infected adults in Cameroon: a cross-sectional study. Am J Trop Med Hyg 74(1):162–164CrossRefGoogle Scholar
  36. Sarkar A, Atapattu A, Belikoff EJ, Heinrich JC, Li X, Horn C, Wimmer EA, Scott MJ (2006) Insulated piggyBac vectors for insect transgenesis. BMC Biotechnol 6:27. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Schaeffer SM, Nakata PA (2016) The expanding footprint of CRISPR/Cas9 in the plant sciences. Plant Cell Rep 35(7):1451–1468. CrossRefPubMedGoogle Scholar
  38. Shadduck JA, Greeley E (1989) Microsporidia and human infections. Clin Microbiol Rev 2(2):158–165CrossRefGoogle Scholar
  39. Smyk B, Cienciala M, Kosiek T (1952) Diagnosis of Nosema bombycis infection. Med Dosw Mikrobiol 4(3):363–366PubMedGoogle Scholar
  40. Thomas JL, Da Rocha M, Besse A, Mauchamp B, Chavancy G (2002) 3xP3-EGFP marker facilitates screening for transgenic silkworm Bombyx mori L. from the embryonic stage onwards. Insect Biochem Mol Biol 32(3):247–253CrossRefGoogle Scholar
  41. Vyas VK, Bushkin GG, Bernstein DA, Getz MA, Sewastianik M, Barrasa MI, Bartel DP, Fink GR (2018) New CRISPR mutagenesis strategies reveal variation in repair mechanisms among fungi. mSphere 3(2).
  42. Wang M, Xu JS, Wang LL, Zhang XY, Zhou ZY (2009) Pathogenicity and genetic divergence of two isolates of microsporidia Nosema bombycis. Yi Chuan 31(11):1121–1126CrossRefGoogle Scholar
  43. Wang Q, Song Y, Chai Y, Pan G, Li T, Yuan Y, Yuan R (2014) Electrochemical immunosensor for detecting the spore wall protein of Nosema bombycis based on the amplification of hemin/G-quadruplex DNAzyme concatamers functionalized Pt@Pd nanowires. Biosens Bioelectron 60:118–123. CrossRefPubMedGoogle Scholar
  44. Wu Z, Li Y, Pan G, Tan X, Hu J, Zhou Z, Xiang Z (2008) Proteomic analysis of spore wall proteins and identification of two spore wall proteins from Nosema bombycis (Microsporidia). Proteomics 8(12):2447–2461. CrossRefPubMedGoogle Scholar
  45. Xing YY, Yang Q, Ren J (2016) Application of CRISPR/Cas9 mediated genome editing in farm animals. Yi Chuan 38(3):217–126. CrossRefPubMedGoogle Scholar
  46. Yue YJ, Tang XD, Xu L, Yan W, Li QL, Xiao SY, Fu XL, Wang W, Li N, Shen ZY (2015) Early responses of silkworm midgut to microsporidium infection--a digital gene expression analysis. J Invertebr Pathol 124:6–14. CrossRefPubMedGoogle Scholar
  47. Zhang F, Lu X, Kumar VS, Zhu H, Chen H, Chen Z, Hong J (2007) Effects of a novel anti-exospore monoclonal antibody on microsporidial Nosema bombycis germination and reproduction in vitro. Parasitology 134(Pt 11):1551–1558. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Silkworm Genome BiologySouthwest UniversityChongqingChina
  2. 2.Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of AgricultureSouthwest UniversityChongqingChina
  3. 3.The General Extension Station of Sericulture Technology of Guangxi Zhuang Autonomous RegionNanningChina

Personalised recommendations