Targeted blocking of miR328 lysosomal degradation with alkalized exosomes sensitizes the chronic leukemia cells to imatinib

  • Yan Dong
  • Yao Lin
  • Xiaotong Gao
  • Yingxin Zhao
  • Zhuo Wan
  • Haotian Wang
  • Mengying Wei
  • Xutao Chen
  • Weiwei Qin
  • Guodong YangEmail author
  • Li LiuEmail author
Applied genetics and molecular biotechnology


Imatinib resistance remains the biggest hurdle for the treatment of chronic myeloid leukemia (CML), with the underlying mechanisms not fully understood. In this study, we found that miR328 significantly and strikingly decreased among other miRNA candidates during the induction of imatinib resistance. Overexpression of miR328 sensitized resistant cells to imatinib via post-transcriptionally decreasing ABCG2 expression, while miR328 knockdown conferred imatinib resistance in parental K562 cells. Moreover, miR328 was found selectively degraded in the lysosomes of K562R cells, as inhibition of lysosome with chloroquine restored miR328 expression and increased sensitivity to imatinib. Moreover, delivery of alkalized exosomes increased endogenous miR328 expression. Compared with the corresponding controls, the alkalized exosomes with or without miR328 sensitized the chronic leukemia cells to imatinib. Taken together, our study has revealed that lysosomal clearance of miR328 in imatinib-resistant cells at least partially contributes to the drug resistance, while delivery of alkalized exosomes would sensitize the chromic leukemia cells to imatinib.


Imatinib resistance Chronic myeloid leukemia miR328 Lysosomal degradation Exosome delivery 


Funding information

This study is funded by the National Natural Science Foundation of China (NSFC 31572344 to Li Liu, NSFC 31771507 to Guodong Yang, NSFC 81400110 to Weiwei Qin, Shaanxi Provincial Science and Technology Department 2018ZDXM-SF-063).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Aizawa S, Fujiwara Y, Contu VR, Hase K, Takahashi M, Kikuchi H, Kabuta C, Wada K, Kabuta T (2016) Lysosomal putative RNA transporter SIDT2 mediates direct uptake of RNA by lysosomes. Autophagy 12(3):565–578. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Apperley JF (2015) Chronic myeloid leukaemia. Lancet 385(9976):1447–1459. CrossRefPubMedGoogle Scholar
  3. Azam M, Latek RR, Daley GQ (2003) Mechanisms of autoinhibition and STI-571/imatinib resistance revealed by mutagenesis of BCR-ABL. Cell 112(6):831–843CrossRefGoogle Scholar
  4. Berman E, Jhanwar S, Hedvat C, Arcila ME, Wahab OA, Levine R, Maloy M, Ma W, Albitar M (2016) Resistance to imatinib in patients with chronic myelogenous leukemia and the splice variant BCR-ABL1(35INS). Leuk Res 49:108–112. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bixby D, Talpaz M (2011) Seeking the causes and solutions to imatinib-resistance in chronic myeloid leukemia. Leukemia 25(1):7–22. CrossRefPubMedGoogle Scholar
  6. Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, Dang CV, Thomas-Tikhonenko A, Mendell JT (2008) Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40(1):43–50. CrossRefPubMedGoogle Scholar
  7. Clevers H (2011) The cancer stem cell: premises, promises and challenges. Nat Med 17(3):313–319. CrossRefPubMedGoogle Scholar
  8. Corbin AS, La Rosee P, Stoffregen EP, Druker BJ, Deininger MW (2003) Several Bcr-Abl kinase domain mutants associated with imatinib mesylate resistance remain sensitive to imatinib. Blood 101(11):4611–4614. CrossRefPubMedGoogle Scholar
  9. Corbin AS, Agarwal A, Loriaux M, Cortes J, Deininger MW, Druker BJ (2011) Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J Clin Invest 121(1):396–409. CrossRefGoogle Scholar
  10. Davis BN, Hata A (2009) Regulation of microRNA biogenesis: a miRiad of mechanisms. Cell Commun Signal 7:18. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Donato NJ, Wu JY, Stapley J, Lin H, Arlinghaus R, Aggarwal BB, Shishodia S, Albitar M, Hayes K, Kantarjian H, Talpaz M (2004) Imatinib mesylate resistance through BCR-ABL independence in chronic myelogenous leukemia. Cancer Res 64(2):672–677CrossRefGoogle Scholar
  12. Dong Y, Gao X, Zhao Y, Wei M, Xu L, Yang G, Liu L (2017) Semirandom mutagenesis profile of BCRABL during imatinib resistance acquirement in K562 cells. Mol Med Rep 16(6):9409–9414. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Doyle L, Ross DD (2003) Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene 22(47):7340–7358. CrossRefPubMedGoogle Scholar
  14. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, Lydon NB, Kantarjian H, Capdeville R, Ohno-Jones S, Sawyers CL (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344(14):1031–1037. CrossRefPubMedGoogle Scholar
  15. Dunn WA Jr (1994) Autophagy and related mechanisms of lysosome-mediated protein degradation. Trends Cell Biol 4(4):139–143CrossRefGoogle Scholar
  16. Eiring AM, Harb JG, Neviani P, Garton C, Oaks JJ, Spizzo R, Liu S, Schwind S, Santhanam R, Hickey CJ, Becker H, Chandler JC, Andino R, Cortes J, Hokland P, Huettner CS, Bhatia R, Roy DC, Liebhaber SA, Caligiuri MA, Marcucci G, Garzon R, Croce CM, Calin GA, Perrotti D (2010) miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell 140(5):652–665. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Eskelinen EL, Saftig P (2009) Autophagy: a lysosomal degradation pathway with a central role in health and disease. Biochim Biophys Acta 1793(4):664–673. CrossRefPubMedGoogle Scholar
  18. Fabbri M, Garzon R, Andreeff M, Kantarjian HM, Garcia-Manero G, Calin GA (2008) MicroRNAs and noncoding RNAs in hematological malignancies: molecular, clinical and therapeutic implications. Leukemia 22(6):1095–1105. CrossRefPubMedGoogle Scholar
  19. Fujiwara Y, Wada K, Kabuta T (2017) Lysosomal degradation of intracellular nucleic acids-multiple autophagic pathways. J Biochem 161(2):145–154. CrossRefPubMedGoogle Scholar
  20. Hu L, McArthur C, Jaffe RB (2010) Ovarian cancer stem-like side-population cells are tumourigenic and chemoresistant. Br J Cancer 102(8):1276–1283. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Huang X, Cortes J, Kantarjian H (2012) Estimations of the increasing prevalence and plateau prevalence of chronic myeloid leukemia in the era of tyrosine kinase inhibitors therapy. Cancer 118(12):3123–3127. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Jensen LE, Whitehead AS (2004) The 3′ untranslated region of the membrane-bound IL-1R accessory protein mRNA confers tissue-specific destabilization. J Immunol 173(10):6248–6258CrossRefGoogle Scholar
  23. Jordan CT, Guzman ML, Noble M (2006) Cancer stem cells. N Engl J Med 355(12):1253–1261. CrossRefPubMedGoogle Scholar
  24. Kantarjian HM, Giles F, Gattermann N, Bhalla K, Alimena G, Palandri F, Ossenkoppele GJ, Nicolini FE, O'Brien SG, Litzow M, Bhatia R, Cervantes F, Haque A, Shou Y, Resta DJ, Weitzman A, Hochhaus A, le Coutre P (2007) Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in chronic phase following imatinib resistance and intolerance. Blood 110(10):3540–3546. CrossRefPubMedGoogle Scholar
  25. Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, Hannon G, Abeliovich A (2007) A microRNA feedback circuit in midbrain dopamine neurons. Science 317(5842):1220–1224. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290(5497):1717–1721CrossRefGoogle Scholar
  27. Kosztyu P, Bukvova R, Dolezel P, Mlejnek P (2014) Resistance to daunorubicin, imatinib, or nilotinib depends on expression levels of ABCB1 and ABCG2 in human leukemia cells. Chem Biol Interact 219:203–210. CrossRefGoogle Scholar
  28. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11(9):597–610. CrossRefPubMedGoogle Scholar
  29. Lane SW, Gilliland DG (2010) Leukemia stem cells. Semin Cancer Biol 20(2):71–76. CrossRefPubMedGoogle Scholar
  30. Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, Teruya-Feldstein J, Reinhardt F, Onder TT, Valastyan S, Westermann F, Speleman F, Vandesompele J, Weinberg RA (2010) miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 12(3):247–256. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ma L, Shan Y, Bai R, Xue L, Eide CA, Ou J, Zhu LJ, Hutchinson L, Cerny J, Khoury HJ, Sheng Z, Druker BJ, Li S, Green MR (2014) A therapeutically targetable mechanism of BCR-ABL-independent imatinib resistance in chronic myeloid leukemia. Sci Transl Med 6(252):252ra121. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Mahon FX, Belloc F, Lagarde V, Chollet C, Moreau-Gaudry F, Reiffers J, Goldman JM, Melo JV (2003) MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models. Blood 101(6):2368–2373. CrossRefPubMedGoogle Scholar
  33. Moitra K, Lou H, Dean M (2011) Multidrug efflux pumps and cancer stem cells: insights into multidrug resistance and therapeutic development. Clin Pharmacol Ther 89(4):491–502. CrossRefPubMedGoogle Scholar
  34. Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time RT-PCR. Nat Protoc 1(3):1559–1582. CrossRefPubMedGoogle Scholar
  35. O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) C-Myc-regulated microRNAs modulate E2F1 expression. Nature 435(7043):839–843. CrossRefPubMedGoogle Scholar
  36. O'Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F, Cornelissen JJ, Fischer T, Hochhaus A, Hughes T, Lechner K, Nielsen JL, Rousselot P, Reiffers J, Saglio G, Shepherd J, Simonsson B, Gratwohl A, Goldman JM, Kantarjian H, Taylor K, Verhoef G, Bolton AE, Capdeville R, Druker BJ (2003) Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 348(11):994–1004. CrossRefPubMedGoogle Scholar
  37. Pan YZ, Morris ME, Yu AM (2009) MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells. Mol Pharmacol 75(6):1374–1379. CrossRefGoogle Scholar
  38. Rüegger S, Großhans H (2012) MicroRNA turnover: when, how, and why. Trends Biochem Sci 37(10):436–446. CrossRefPubMedPubMedCentralGoogle Scholar
  39. San Jose-Eneriz E, Roman-Gomez J, Jimenez-Velasco A, Garate L, Martin V, Cordeu L, Vilas-Zornoza A, Rodriguez-Otero P, Calasanz MJ, Prosper F, Agirre X (2009) MicroRNA expression profiling in imatinib-resistant chronic myeloid leukemia patients without clinically significant ABL1-mutations. Mol Cancer 8:69. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Schanen BC, Li X (2011) Transcriptional regulation of mammalian miRNA genes. Genomics 97(1):1–6. CrossRefPubMedGoogle Scholar
  41. Slezak-Prochazka I, Durmus S, Kroesen BJ, van den Berg A (2010) MicroRNAs, macrocontrol: regulation of miRNA processing. Rna 16(6):1087–1095. CrossRefPubMedPubMedCentralGoogle Scholar
  42. To KK, Zhan Z, Litman T, Bates SE (2008) Regulation of ABCG2 expression at the 3′ untranslated region of its mRNA through modulation of transcript stability and protein translation by a putative microRNA in the S1 colon cancer cell line. Mol Cell Biol 28(17):5147–5161. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Turrini E, Haenisch S, Laechelt S, Diewock T, Bruhn O, Cascorbi I (2012) MicroRNA profiling in K-562 cells under imatinib treatment: influence of miR-212 and miR-328 on ABCG2 expression. Pharmacogenet Genomics 22(3):198–205. CrossRefPubMedGoogle Scholar
  44. van den Boorn JG, Schlee M, Coch C, Hartmann G (2011) SiRNA delivery with exosome nanoparticles. Nat Biotechnol 29(4):325–326. CrossRefPubMedGoogle Scholar
  45. Villarroya-Beltri C, Baixauli F, Mittelbrunn M, Fernandez-Delgado I, Torralba D, Moreno-Gonzalo O, Baldanta S, Enrich C, Guerra S, Sanchez-Madrid F (2016) ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nat Commun 7:13588. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8(10):755–768. CrossRefPubMedGoogle Scholar
  47. Wang LX, Wang JD, Chen JJ, Long B, Liu LL, Tu XX, Luo Y, Hu Y, Lin DJ, Lu G, Long ZJ, Liu Q (2016) Aurora a kinase inhibitor AKI603 induces cellular senescence in chronic myeloid leukemia cells harboring T315I mutation. Sci Rep 6:35533. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Zhang J, Li S, Li L, Li M, Guo C, Yao J, Mi S (2015) Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics 13(1):17–24. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yan Dong
    • 1
  • Yao Lin
    • 2
  • Xiaotong Gao
    • 1
  • Yingxin Zhao
    • 1
  • Zhuo Wan
    • 1
  • Haotian Wang
    • 1
  • Mengying Wei
    • 3
  • Xutao Chen
    • 4
  • Weiwei Qin
    • 1
  • Guodong Yang
    • 3
    Email author
  • Li Liu
    • 1
    Email author
  1. 1.Department of Hematology, Tangdu HospitalFourth Military Medical UniversityXi’anChina
  2. 2.Department of Stomatology, the Second Affiliated hospitalShantou University Medical CollegeShantouChina
  3. 3.Department of Biochemistry and Molecular BiologyFourth Military Medical UniversityXi’anChina
  4. 4.Department of Implantation, School of StomatologyFourth Military Medical UniversityXi’anChina

Personalised recommendations