Advertisement

Advances in research on Cordyceps militaris degeneration

  • Haiwei LouEmail author
  • Junfang Lin
  • Liqiong Guo
  • Xinwei Wang
  • Shuangqi Tian
  • Chenxi Liu
  • Yu Zhao
  • Renyong ZhaoEmail author
Mini-Review
  • 48 Downloads

Abstract

As a highly valued fungus, Cordyceps militaris has been widely used all over the world. Although the wild resources of C. militaris are limited, the fruiting bodies of C. militaris have been successfully cultivated on a large-scale. However, the high-frequency degeneration of C. militaris during subculture and preservation seriously limits the development of the C. militaris industry. How to solve the degeneration of C. militaris has become an unsolved bottleneck problem throughout the whole Cordyceps industry. The aim of this review is to illustrate the phenotypic changes after the degeneration of C. militaris, focusing on the causes (including environmental factors and genetic variation) of C. militaris degeneration. Moreover, genetic variation is the root cause of the degeneration of C. militaris strains. Measures to prevent the degeneration of C. militaris are also discussed in this review. This paper will increase understanding of the degeneration mechanism of C. militaris, provide a reference for solving the degeneration problem of C. militaris, and lay a foundation for promoting the sustainable development of C. militaris.

Keywords

Filamentous fungi Degeneration mechanism Fruiting body Genetic variation Subculture Cordyceps militaris 

Notes

Funding

This study was funded by the National Natural Science Foundation of China-Henan Joint Fund (grant number U1604234) and the National Natural Science Foundation of China (grant number 31572178).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Chen YS, Liu BL, Chang YN (2011) Effects of light and heavy metals on Cordyceps militaris fruit body growth in rice grain-based cultivation. Korean J Chem Eng 28(3):875–879CrossRefGoogle Scholar
  2. Chen A, Wang Y, Shao Y, Huang B (2017) A novel technique for rejuvenation of degenerated caterpillar medicinal mushroom, Cordyceps militaris (Ascomycetes), a valued traditional Chinese medicine. Int J Med Mushrooms 19(1):87–91CrossRefGoogle Scholar
  3. Chen BX, Wei T, Ye ZW, Yun F, Kang LZ, Tang HB, Guo LQ, Lin JF (2018) Efficient CRISPR-Cas9 gene disruption system in edible-medicinal mushroom Cordyceps militaris. Front Microbiol 9:1157CrossRefGoogle Scholar
  4. Cui JD (2015) Biotechnological production and applications of Cordyceps militaris, a valued traditional Chinese medicine. Crit Rev Biotechnol 35(4):475–484CrossRefGoogle Scholar
  5. Dang HN, Wang CL, Lay HL (2018) Effect of nutrition, vitamin, grains, and temperature on the mycelium growth and antioxidant capacity of Cordyceps militaris (strains AG-1 and PSJ-1). J Radiat Res Appl Sci 11(2):130–138CrossRefGoogle Scholar
  6. Das SK, Masuda M, Sakurai A, Sakakibara M (2010) Medicinal uses of the mushroom Cordyceps militaris: current state and prospects. Fitoterapia 81(8):961–968CrossRefGoogle Scholar
  7. Dong JZ, Wang SH, Ai XR, Yao L, Sun ZW, Lei C, Wang Y, Wang Q (2013) Composition and characterization of cordyxanthins from Cordyceps militaris fruit bodies. J Funct Foods 5(3):1450–1455CrossRefGoogle Scholar
  8. Gao X (2008) Study on the mating type of Cordyceps militaris. Acta Edulis Fungi 15(1):1–5 (in Chinese)Google Scholar
  9. Guo M, Bian Y, Wang J, Wang G, Ma X, Xu Z (2017) Biological and molecular characteristics of a novel partitivirus infecting the edible fungus Lentinula edodes. Plant Dis 101(5):726–733CrossRefGoogle Scholar
  10. He L, Han C, Li P, Chen Y, Liu D, Geng L (2009) Effect of mineral elements on colony types of Cordyceps militaris in subculturing. J Shenyang Agric Univ 40(6):672–677 (in Chinese)Google Scholar
  11. Jiang K, Han R (2015) Rhf1 gene is involved in the fruiting body production of Cordyceps militaris fungus. J Ind Microbiol Biotechnol 42(8):1183–1196CrossRefGoogle Scholar
  12. Kim SY, Kim KH, Im CH, Ali A, Lee CY, Kong WS, Ryu JS (2014) Identification of degenerate nuclei and development of a SCAR marker for Flammulina velutipes. PLoS One 9(9):e107207CrossRefGoogle Scholar
  13. Kunhorm P, Chaicharoenaudomrung N, Noisa P (2019) Enrichment of cordycepin for cosmeceutical applications: culture systems and strategies. Appl Microbiol Biotechnol 103(4):1681–1691CrossRefGoogle Scholar
  14. Lee HJ, Kim SW, Ryu JS, Lee CY, Ro HS (2014) Isolation of a variant strain of Pleurotus eryngii and the development of specific DNA markers to identify the variant strain. Mycobiology 42(1):46–51CrossRefGoogle Scholar
  15. Lee HH, Kang N, Park I, Park J, Kim I, Kim J, Kim N, Lee JY, Seo YS (2017) Characterization of newly bred Cordyceps militaris strains for higher production of cordycepin through HPLC and URP-PCR analysis. J Microbiol Biotechnol 27(7):1223–1232CrossRefGoogle Scholar
  16. Li MN, Wu XJ, Li CY, Feng BS, Li QW (2003) Molecular analysis of degeneration of artificial planted Cordyceps militaris. Mycosystema 22(2):277–282 (in Chinese)Google Scholar
  17. Li X, Liu Q, Li W, Li Q, Qian Z, Liu X, Dong C (2018) A breakthrough in the artificial cultivation of Chinese cordyceps on a large-scale and its impact on science, the economy, and industry. Crit Rev Biotechnol 39(2):381–391Google Scholar
  18. Lin QQ, Qiu XH, Zheng ZL, Xie CH, Xu ZF, Han RC (2010) Characteristics of the degenerate strains of Cordyceps militaris. Mycosystema 29(5):670–677 (in Chinese)Google Scholar
  19. Lin S, Liu ZQ, Xue YP, Baker PJ, Wu H, Xu F, Teng Y, Brathwaite ME, Zheng YG (2016) Biosynthetic pathway analysis for improving the cordycepin and cordycepic acid production in Hirsutella sinensis. Appl Biochem Biotechnol 179(4):633–649CrossRefGoogle Scholar
  20. Lou HW, Ye ZW, Yun F, Lin JF, Guo LQ, Chen BX, Mu ZX (2018) Targeted gene deletion in Cordyceps militaris using the split-marker approach. Mol Biotechnol 60(5):380–385CrossRefGoogle Scholar
  21. Lou HW, Ye ZW, Yu YH, Lin JF, Guo LQ, Chen BX, Tang HB, Wei T, Chen LT, Yun F (2019) The efficient genetic transformation of Cordyceps militaris by using mononuclear protoplasts. Sci Hortic 243:307–313CrossRefGoogle Scholar
  22. Magae Y, Akahane K, Nakamura K, Tsunoda S (2005) Simple colorimetric method for detecting degenerate strains of the cultivated basidiomycete Flammulina velutipes (Enokitake). Appl Environ Microbiol 71(10):6388–6389CrossRefGoogle Scholar
  23. Masuda M, Das SK, Fujihara S, Hatashita M, Sakurai A (2011) Production of cordycepin by a repeated batch culture of a Cordyceps militaris mutant obtained by proton beam irradiation. J Biosci Bioeng 111(1):55–60CrossRefGoogle Scholar
  24. Nurmamat E, Xiao H, Zhang Y, Jiao Z (2018) Effects of different temperatures on the chemical structure and antitumor activities of polysaccharides from Cordyceps militaris. Polymers 10(4):430CrossRefGoogle Scholar
  25. Shrestha B, Kim HK, Sung GH, Spatafora JW, Sung JM (2004) Bipolar heterothallism, a principal mating system of Cordyceps militaris in vitro. Biotechnol Bioprocess Eng 9(6):440–446CrossRefGoogle Scholar
  26. Shrestha B, Han SK, Sung JM, Sung GH (2012) Fruiting body formation of Cordyceps militaris from multi-ascospore isolates and their single ascospore progeny strains. Mycobiology 40(2):100–106CrossRefGoogle Scholar
  27. Sun SJ, Deng CH, Zhang LY, Hu KH (2017) Molecular analysis and biochemical characteristics of degenerated strains of Cordyceps militaris. Arch Microbiol 199(6):939–944CrossRefGoogle Scholar
  28. Sun H, Hu T, Guo Y, Liang Y (2018) Preservation affects the vegetative growth and fruiting body production of Cordyceps militaris. World J Microbiol Biotechnol 34(11):166CrossRefGoogle Scholar
  29. Wang L, Zhang WM, Hu B, Chen YQ, Qu LH (2008) Genetic variation of Cordyceps militaris and its allies based on phylogenetic analysis of rDNA ITS sequence data. Fungal Divers 31:147–155Google Scholar
  30. Wang H, Wei J, Lin N, Feng A, Chen M, Bao D (2010) Distribution of mating-type genes in fruiting and non-fruiting forms of Cordyceps militaris. Acta Edulis Fungi 17(4):1–4 (in Chinese)Google Scholar
  31. Wang YL, Wang ZX, Liu C, Wang SB, Huang B (2015) Genome-wide analysis of DNA methylation in the sexual stage of the insect pathogenic fungus Cordyceps militaris. Fungal Biol 119(12):1246–1254CrossRefGoogle Scholar
  32. Wang D, He X, Zhao R, Ren G, Liu Y (2016) Comparison of Cordyceps militaris spawn rejuvenation method. North Hortic 40(17):137–139 (in Chinese)Google Scholar
  33. Wang F, Song X, Dong X, Zhang J, Dong C (2017) DASH-type cryptochromes regulate fruiting body development and secondary metabolism differently than CmWC-1 in the fungus Cordyceps militaris. Appl Microbiol Biotechnol 101(11):4645–4657CrossRefGoogle Scholar
  34. Wang CC, Wu JY, Chang CY, Yu ST, Liu YC (2019) Enhanced exopolysaccharide production by Cordyceps militaris using repeated batch cultivation. J Biosci Bioeng 127(4):499–505CrossRefGoogle Scholar
  35. Wen TC, Li MF, Kang JC, He J (2012) A molecular genetic study on fruiting-body formation of Cordyceps militaris. Afr J Microbiol Res 6(24):5215–5221Google Scholar
  36. Wen ZX, Meng N, Li XJ, Du XF, Ma SH, Mi R, Sun YX, Li SY, Li YJ (2017) Research on Cordyceps militaris spawn rejuvenation with silkworm. Edible Fungi China 37(1):19–21 (in Chinese)Google Scholar
  37. Xia Y, Luo F, Shang Y, Chen P, Lu Y, Wang C (2017) Fungal cordycepin biosynthesis is coupled with the production of the safeguard molecule pentostatin. Cell Chem Biol 24(12):1479–1489CrossRefGoogle Scholar
  38. Xiang X, Wang X, Bian Y, Xu Z (2016) Development of crossbreeding high-yield-potential strains for commercial cultivation in the medicinal mushroom Wolfiporia cocos (Higher Basidiomycetes). J Nat Med 70(3):645–652CrossRefGoogle Scholar
  39. Xin X, Yin J, Zhang B, Li Z, Zhao S, Gui Z (2019) Genome-wide analysis of DNA methylation in subcultured Cordyceps militaris. Arch Microbiol 201(3):369–375CrossRefGoogle Scholar
  40. Xiong C, Xia Y, Zheng P, Wang C (2013) Increasing oxidative stress tolerance and subculturing stability of Cordyceps militaris by overexpression of a glutathione peroxidase gene. Appl Microbiol Biotechnol 97(5):2009–2015CrossRefGoogle Scholar
  41. Yang T, Dong C (2014) Photo morphogenesis and photo response of the blue-light receptor gene Cmwc-1 in different strains of Cordyceps militaris. FEMS Microbiol Lett 352(2):190–197CrossRefGoogle Scholar
  42. Yin J, Xin X, Weng Y, Gui Z (2017) Transcriptome-wide analysis reveals the progress of Cordyceps militaris subculture degeneration. PLoS One 12(10):e0186279CrossRefGoogle Scholar
  43. Yin J, Xin XD, Weng YJ, Li SH, Jia JQ, Gui ZZ (2018) Genotypic analysis of degenerative Cordyceps militaris cultured in the pupa of Bombyx mori. Entomol Res 48(3):137–144CrossRefGoogle Scholar
  44. Zhang G, Liang Y (2013) Improvement of fruiting body production in Cordyceps militaris by molecular assessment. Arch Microbiol 195(8):579–585CrossRefGoogle Scholar
  45. Zhang X, Dong X, Song X, Wang F, Dong C (2017) Photoperiodic responses and characterization of the Cmvvd gene encoding a blue light photoreceptor from the medicinal caterpillar fungus Cordyceps militaris (Ascomycetes). Int J Med Mushrooms 19(2):163–172CrossRefGoogle Scholar
  46. Zhang J, Wang F, Liu K, Liu Q, Yang Y, Dong C (2018) Heat and light stresses affect metabolite production in the fruit body of Cordyceps militaris. Appl Microbiol Biotechnol 102(10):4523–4533CrossRefGoogle Scholar
  47. Zheng P, Xia Y, Xiao G, Xiong C, Hu X, Zhang S, Zheng H, Huang Y, Zhou Y, Wang S, Zhao GP, Liu X, St Leger RJ, Wang C (2011a) Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biol 12(11):R116CrossRefGoogle Scholar
  48. Zheng Z, Huang C, Cao L, Xie C, Han R (2011b) Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in medicinal fungus Cordyceps militaris. Fungal Biol 115(3):265–274CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Food Science and TechnologyHenan University of TechnologyZhengzhouChina
  2. 2.Department of Bioengineering, College of Food ScienceSouth China Agricultural UniversityGuangzhouChina

Personalised recommendations