Advertisement

β-N-Acetylhexosaminidases—the wizards of glycosylation

  • Pavla Bojarová
  • Jan Bruthans
  • Vladimír KřenEmail author
Mini-Review
  • 79 Downloads

Abstract

β-N-Acetylhexosaminidases (EC 3.2.1.52) are a unique family of glycoside hydrolases with dual substrate specificity and a particular reaction mechanism. Though hydrolytic enzymes per se, their good stability, easy recombinant production, absolute stereoselectivity, and a broad substrate specificity predestine these enzymes for challenging applications in carbohydrate synthesis. This mini-review aims to demonstrate the catalytic potential of β-N-acetylhexosaminidases in a range of unusual reactions, processing of unnatural substrates, formation of unexpected products, and demanding reaction designs. The use of unconventional media can considerably alter the progress of transglycosylation reactions. By means of site-directed mutagenesis, novel catalytic machineries can be constructed. Glycosylation of difficult substrates such as sugar nucleotides was accomplished, and the range of afforded glycosidic bonds comprises unique non-reducing sugars. Specific functional groups may be tolerated in the substrate molecule, which makes β-N-acetylhexosaminidases invaluable allies in difficult synthetic problems.

Keywords

β-N-acetylhexosaminidase Carbohydrate Enzymatic synthesis N-acetylglucosamine N-acetylgalactosamine Glycosidase Glycosylation Modified substrate Oligosaccharide 

Notes

Acknowledgments

The authors are thankful for financial and networking support from the EU COST actions MuTaLig CA15135, and EU-Cardioprotection CA16225.

Funding

This study was funded by the Ministry of Education, Youth and Sports of the Czech Republic projects Nos. LTC17005, and LTC18041.

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Ajisaka K, Nishida H, Fujimoto H (1987) Use of an activated carbon column for the synthesis of disaccharides by use of a reversed hydrolysis activity of β-galactosidase. Biotechnol Lett 9:387–392.  https://doi.org/10.1007/BF01089002 CrossRefGoogle Scholar
  2. Alsina C, Faijes M, Planas A (2019) Glycosynthase-type GH18 mutant chitinases at the assisting catalytic residue for polymerization of chitooligosaccharides. Carbohydr Res 478:1–9.  https://doi.org/10.1016/j.carres.2019.04.001 CrossRefPubMedGoogle Scholar
  3. Balcewich MD, Stubbs KA, He Y, James TW, Davies GJ, Vocadlo DJ, Mark BL (2009) Insight into a strategy for attenuating AmpC-mediated β-lactam resistence: Structural basis for selective inhibition of the NagZ. Prot Sci 18:1541–1551.  https://doi.org/10.1002/pro.137 CrossRefGoogle Scholar
  4. Ballardie FW, Capon B, Dearie WM, Foster RL (1976) Neighbouring acetamido-group participation in reactions of derivatives of 2-acetamido-2-deoxy-D-glucose. Carbohydr Res 49:79–92.  https://doi.org/10.1016/S0008-6215(00)83127-4 CrossRefPubMedGoogle Scholar
  5. Bassanini I, Kapešová J, Petrásková L, Pelantová H, Markošová K, Rebroš M, Valentová K, Kotik M, Káňová K, Bojarová P, Cvačka J, Turková L, Ferrandi EE, Bayout I, Riva S, Křen V (2019) Glycosidase-catalyzed synthesis of glycosyl esters and phenolic glycosides of aromatic acids. Adv Synth Catal 361:2627–2637.  https://doi.org/10.1002/adsc.201900259 CrossRefGoogle Scholar
  6. Bojarová P, Křen V (2009) Glycosidases: a key to tailored carbohydrates. Trends Biotechnol 27:199–209.  https://doi.org/10.1016/j.tibtech.2008.12.003 CrossRefPubMedGoogle Scholar
  7. Bojarová P, Křen V (2011) Glycosidases in carbohydrate synthesis: when organic chemistry falls short. Chimia 65:65–70.  https://doi.org/10.2533/chimia.2011.65 CrossRefPubMedGoogle Scholar
  8. Bojarová P, Křen V (2016) Sugared biomaterial binding lectins: achievements and perspectives. Biomater Sci 4:1142–1160.  https://doi.org/10.1039/c6bm00088f CrossRefPubMedGoogle Scholar
  9. Bojarová P, Křenek K, Kuzma M, Petrásková L, Bezouška K, Namdjou D-J, Elling L, Křen V (2008) N-Acetylhexosamine triad in one molecule: chemoenzymatic introduction of 2-acetamido-2-deoxy-β-d-galactopyranosyluronic acid residue into a complex oligosaccharide. J Mol Catal B Enzym 50:69–73.  https://doi.org/10.1016/j.molcatb.2007.09.002 CrossRefGoogle Scholar
  10. Bojarová P, Slámová K, Křenek K, Gažák R, Kulik N, Ettrich R, Pelantová H, Kuzma M, Riva S, Adámek D, Bezouška K, Křen V (2011) Charged hexosaminides as new substrates for β-N-acetylhexosaminidase-catalyzed synthesis of immunomodulatory disaccharides. Adv Synth Catal 353:2409–2420.  https://doi.org/10.1002/adsc.201100371 CrossRefGoogle Scholar
  11. Bojarová P, Rosencrantz RR, Elling L, Křen V (2013) Enzymatic glycosylation of multivalent scaffolds. Chem Soc Rev 42:4774–4797.  https://doi.org/10.1039/c2cs35395d CrossRefPubMedGoogle Scholar
  12. Bojarová P, Chytil P, Mikulová B, Bumba L, Konefal R, Pelantová H, Krejzová J, Slámová K, Petrásková L, Kotrchová L, Cvačka J, Etrych T, Křen V (2017) Glycan-decorated HPMA copolymers as high-affinity lectin ligands. Polym Chem 8:2647–2658.  https://doi.org/10.1039/C7PY00271H CrossRefGoogle Scholar
  13. Bojarová P, Tavares MR, Laaf D, Bumba L, Petrásková L, Konefał R, Bláhová M, Pelantová H, Elling L, Etrych T, Chytil P, Křen V (2018) Biocompatible glyconanomaterials based on HPMA-copolymer for specific targeting of galectin-3. J Nanobiotechnol 16:73.  https://doi.org/10.1186/s12951-018-0399-1 CrossRefGoogle Scholar
  14. Bojarová P, Kulik N, Slámová K, Hubálek M, Kotik M, Cvačka J, Pelantová H, Křen V (2019a) Selective β-N-acetylhexosaminidase from Aspergillus versicolor – a tool for producing bioactive carbohydrates. Appl Microbiol Biotechnol 103:1737–1753.  https://doi.org/10.1007/s00253-018-9534-z CrossRefPubMedGoogle Scholar
  15. Bojarová P, Kulik N, Hovorková M, Slámová K, Pelantová H, Křen V (2019b) The β-N-acetylhexosaminidase in the synthesis of bioactive glycans: protein and reaction engineering. Molecules 24:599.  https://doi.org/10.3390/molecules24030599 CrossRefPubMedCentralGoogle Scholar
  16. Castilho A, Gattinger P, Grass J, Jez J, Pabst M, Altmann F, Gorfer M, Strasser R, Steinkellner H (2011) N-Glycosylation engineering of plants for the biosynthesis of glycoproteins with bisected and branched complex N-glycans. Glycobiology 21:813–823.  https://doi.org/10.1093/glycob/cwr009 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cekic N, Heinonen JE, Stubbs KA, Roth C, He Y, Bennet AJ, McEachern EJ, Davies GJ, Vocadlo DJ (2016) Analysis of transition state mimicry by tight binding aminothiazoline inhibitors provides insight into catalysis by human O-GlcNAcase. Chem Sci 7:3742–3750.  https://doi.org/10.1039/c6sc00370b CrossRefPubMedPubMedCentralGoogle Scholar
  18. Chen X, Xu L, Jin L, Sun B, Gu G, Lu L, Xiao M (2016) Efficient and regioselective synthesis of β-GalNAc/GlcNAc-lactose by a bifunctional transglycosylating β-N-acetylhexosaminidase from Bifidobacterium bifidum. Appl Environ Microbiol 82:5642–5652.  https://doi.org/10.1128/AEM.01325-16 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cheng Q, Li H, Merdek K, Park JT (2000) Molecular characterization of the β-N-acetylglucosaminidase of Escherichia coli and its role in cell wall recycling. J Bacteriol 182:4836–4840.  https://doi.org/10.1128/jb.182.17.4836-4840.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Desmet T, Soetaert W, Bojarová P, Křen V, Dijkhuizen L, Eastwick-Field V, Schiller A (2012) Enzymatic glycosylation of small molecules: Challenging substrates require tailored catalysts. Chem Eur J 18:10786–10801.  https://doi.org/10.1002/chem.201103069 CrossRefPubMedGoogle Scholar
  21. Drozdová A, Bojarová P, Křenek K, Weignerová L, Henßen B, Elling L, Christensen H, Jensen HH, Pelantová H, Kuzma M, Bezouška K, Krupová M, Adámek D, Slámová K, Křen V (2011) Enzymatic synthesis of dimeric glycomimetic ligands of NK cell activation receptors. Carbohydr Res 346:1599–1609.  https://doi.org/10.1016/j.carres.2011.04.043 CrossRefPubMedGoogle Scholar
  22. Faijes M, Castejón-Vilatersana M, Val-Cid C, Planas A (2019) Enzymatic and cell factory approaches to the production of human milk oligosaccharides. Biotechnol Adv, in press.  https://doi.org/10.1016/j.biotechadv.2019.03.014
  23. Fairbanks AJ (2017) The ENGases: versatile biocatalysts for the production of homogeneous N-linked glycopeptides and glycoproteins. Chem Soc Rev 46:5128–5146.  https://doi.org/10.1039/C6CS00897F CrossRefPubMedGoogle Scholar
  24. Fan SQ, Huang W, Wang L-X (2012) Remarkable transglycosylation activity of glycosynthase mutants of Endo-D, an Endo-β-N-acetylglucosaminidase from Streptococcus pneumoniae. J Biol Chem 287:11272–11281.  https://doi.org/10.1074/jbc.M112.340497 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Farrán A, Cai C, Sandoval M, Xu Y, Liu J, Hernáiz MJ, Linhardt RJ (2015) Green solvents in carbohydrate chemistry: From raw materials to fine chemicals. Chem Rev 115:6811–6853.  https://doi.org/10.1021/cr500719h CrossRefPubMedGoogle Scholar
  26. Fialová P, Weignerová L, Rauvolfová J, Přikrylová V, Pišvejcová A, Ettrich R, Kuzma M, Sedmera P, Křen V (2004) Hydrolytic and transglycosylation reactions of N-acyl modified substrates catalysed by β-N-acetylhexosaminidases. Tetrahedron 60:693–701.  https://doi.org/10.1016/j.tet.2003.10.111 CrossRefGoogle Scholar
  27. Fialová P, Carmona AT, Robina I, Ettrich R, Sedmera P, Přikrylová V, Petrásková-Hušáková L, Křen V (2005a) Glycosyl azide - a novel substrate for enzymatic transglycosylations. Tetrahedron Lett 46:8715–8718.  https://doi.org/10.1016/j.tetlet.2005.10.040 CrossRefGoogle Scholar
  28. Fialová P, Namdjou D-J, Ettrich R, Přikrylová V, Rauvolfová J, Křenek K, Kuzma M, Elling L, Bezouška K, Křen V (2005b) Combined application of galactose oxidase and β-N-acetylhexosaminidase in the synthesis of complex immunoactive N-acetylgalactosaminides. Adv Synth Catal 347:997–1006.  https://doi.org/10.1002/adsc.200505041 CrossRefGoogle Scholar
  29. Fialová-Bojarová P, Křen V (2006) Enzymatic approaches to O-glycoside introduction: Glycosidases. In: Kamerling JP (ed) Comprehensive Glycoscience, 2007. Elsevier, Oxford, pp 453–487Google Scholar
  30. Gill I, Valivety R (2000a) Monosaccharide–alkyl glycoside glass phases: Plasticization with hydrophilic and hydrophobic molecules. Angew Chem Int Ed Eng 39:3801–3804.  https://doi.org/10.1002/1521-3773(20001103)39:21<3801::AID-ANIE3801>3.0.CO;2-J CrossRefGoogle Scholar
  31. Gill I, Valivety R (2000b) Enzymatic glycosylation in plasticized glass phases: a novel and efficient route to O-glycosides. Angew Chem Int Ed Eng 39:3804–3808.  https://doi.org/10.1002/1521-3773(20001103)39:21<3804::AID-ANIE3804>3.0.CO;2-1 CrossRefGoogle Scholar
  32. Greve LC, Prody GA, Hedrick JL (1985) N-Acetyl-β-d-glucosaminidase activity in the cortical granules of Xenopus laevis eggs. Gamete Res 12:305–312.  https://doi.org/10.1002/mrd.1120120309 CrossRefGoogle Scholar
  33. Hedbys L, Larsson P-O, Mosbach K, Svensson S (1984) Synthesis of the disaccharide 6-O-β-D-galactopyranosyl-2-acetamido-2-deoxy-D-galactose using immobilized β-galactosidase. Biochem Biophys Res Commun 123:8–15.  https://doi.org/10.1016/0006-291X(84)90372-3 CrossRefPubMedGoogle Scholar
  34. Heidecke CD, Ling ZL, Bruce NC, Moir JWB, Parsons TB, Fairbanks AJ (2008) Enhanced glycosylation with mutants of endohexosaminidase A (Endo A). ChemBioChem 9:2045–2051.  https://doi.org/10.1002/cbic.200800214 CrossRefPubMedGoogle Scholar
  35. Hill AC (1898) Reversible zymohydrolysis. J Chem Soc Trans 73:634–658CrossRefGoogle Scholar
  36. Honda Y, Fushinobu S, Hidaka M, Wakagi T, Shoun H, Taniguchi H, Kitaoka M (2008) Alternative strategy for converting an inverting glycoside hydrolase into a glycosynthase. Glycobiology 18:325–330.  https://doi.org/10.1093/glycob/cwn011 CrossRefPubMedGoogle Scholar
  37. Horsch M, Mayer C, Sennhauser U, Rast DM (1997) β-N-Acetylhexosaminidase: A target for the design of antifungal agents. Pharmacol Ther 76:187–218.  https://doi.org/10.1016/S0163-7258(97)00110-1 CrossRefPubMedGoogle Scholar
  38. Hušáková L, Riva S, Casali M, Nicotra S, Kuzma M, Huňková Z, Křen V (2001) Enzymatic glycosylation using 6-O-acylated sugar donors and acceptors: β-N-acetylhexosaminidase catalysed synthesis of 6-O,N,N’-triacetyl-chitobiose and 6’-O,N,N’-triacetylchitobiose. Carbohydr Res 331:143–148.  https://doi.org/10.1016/S0008-6215(01)00027-1 CrossRefPubMedGoogle Scholar
  39. Hušáková L, Herkommerová-Rajnochová E, Semeňuk T, Kuzma M, Rauvolfová J, Přikrylová V, Ettrich R, Plíhal O, Bezouška K, Křen V (2003) Enzymatic discrimination of 2-acetamido-2-deoxy-D-mannopyranose-containing disaccharides using β-N-acetylhexosaminidases. Adv Synth Catal 345:735–742.  https://doi.org/10.1002/adsc.200303002 CrossRefGoogle Scholar
  40. Jamek SB, Muschiol J, Holck J, Zeuner B, Busk PK, Mikkelsen JD, Meyer AS (2018) Loop protein engineering for improved transglycosylation activity of a β-N-acetylhexosaminidase. ChemBioChem 19:1858–1865.  https://doi.org/10.1002/cbic.201800181 CrossRefPubMedGoogle Scholar
  41. Kaftzik N, Wasserscheid P, Kragl U (2002) Use of ionic liquids to increase the yield and enzyme stability in the β-galactosidase catalysed synthesis of N-acetyllactosamine. Org Process Res Dev 6:553–557.  https://doi.org/10.1021/op0255231 CrossRefGoogle Scholar
  42. Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci 103:11086–11091.  https://doi.org/10.1073/pnas.0508882103 CrossRefPubMedGoogle Scholar
  43. Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409:241–246.  https://doi.org/10.1038/35051719 CrossRefPubMedGoogle Scholar
  44. Křen V, Thiem J (1997) Glycosylation employing bio-systems: from enzymes to whole cells. Chem Soc Rev 26:463–473.  https://doi.org/10.1039/CS9972600463 CrossRefGoogle Scholar
  45. Křen V, Ščigelová M, Přikrylová V, Havlíček V, Sedmera P (1994) Enzymatic preparation of β-N-acetyl hexosaminides of ergot alkaloids. Biocatalysis 10:181–193.  https://doi.org/10.3109/10242429409065228 CrossRefGoogle Scholar
  46. Křen V, Huňková Z, Halada P, Suzuki Y (1998a) Glycosylation of thiamin by β-N-acetylhexosaminidases. Biosci Biotechnol Biochem 62:2415–2417.  https://doi.org/10.1271/bbb.62.2415 CrossRefPubMedGoogle Scholar
  47. Křen V, Rajnochová E, Huňková Z, Dvořáková J, Sedmera P (1998b) Glycosidase synthesis of oligosaccharides: unusual nonreducing sugar GlcNAcβ(1-1)βMan formation by β-N-acetylhexosaminidase from Aspergillus oryzae. Tetrahedron Lett 39:9777–9780.  https://doi.org/10.1016/S0040-4039(98)02171-6 CrossRefGoogle Scholar
  48. Laaf D, Steffens H, Pelantová H, Bojarová P, Křen V, Elling L (2017) Chemo-enzymatic synthesis of branched N-acetyllactosamine glycan oligomers for galectin-3 inhibition. Adv Synth Catal 359:4015–4024.  https://doi.org/10.1002/adsc.201700969 CrossRefGoogle Scholar
  49. Laaf D, Bojarová P, Elling L, Křen V (2019) Galectin-carbohydrate interactions in biomedicine and biotechnology. Trends Biotechnol 2019(37):402–415.  https://doi.org/10.1039/C9CC02051A CrossRefGoogle Scholar
  50. Li Y, Xue M, Sheng X, Yu H, Zeng J, Thon V, Chen Y, Muthana MM, Wang PG, Chen X (2016) Donor substrate promiscuity of bacterial β1–3-N-acetylglucosaminyltransferases and acceptor substrate flexibility of β1–4-galactosyltransferases. Bioorg Med Chem 24:1696–1705.  https://doi.org/10.1016/j.bmc.2016.02.043 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Loft KJ, Bojarová P, Slámová K, Křen V, Williams SJ (2009) Synthesis of sulfated glucosaminides and use in studying the substrate specificity of sulfatases and fungal β-N-acetylhexosaminidases. ChemBioChem 10:565–576.  https://doi.org/10.1002/adsc.201700969 CrossRefPubMedGoogle Scholar
  52. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495.  https://doi.org/10.1093/nar/gkt1178 CrossRefPubMedGoogle Scholar
  53. Macauley MS, Whitworth GE, Debowski AW, Chin D, Vocadlo DJ (2005) O-GlcNAcase uses substrate-assisted catalysis; kinetic analysis and development of highly selective mechanism-inspired inhibitors. J Biol Chem 280:25313–25322.  https://doi.org/10.1074/jbc.M413819200 CrossRefPubMedGoogle Scholar
  54. MacManus DA, Vulfson EN (2000) Regioselectivity of enzymatic glycosylation of 6-O-acyl glycosides in supersaturated solutions. Biotechnol Bioeng 69:585–590.  https://doi.org/10.1002/1097-0290(20000920)69:6<585::AID-BIT1>3.0.CO;2-P CrossRefPubMedGoogle Scholar
  55. Marqvorsen MHS, Paramasivam S, Doelman W, Fairbanks AJ, van Kasteren SI (2019) Efficient synthesis and enzymatic extension of an N-GlcNAz asparagine building block. Chem Commun 55:5287–5290.  https://doi.org/10.1039/C9CC02051A CrossRefGoogle Scholar
  56. Mega T, Ikenaka T, Matsushima Y (1970) Studies on N-acetyl-β-d-glucosaminidase of Aspergillus oryzae: I. Purification and characterization of N-acetyl-β-d-glucosaminidase obtained from Takadiastase. J Biochem (Tokyo) 68:109–117.  https://doi.org/10.1093/oxfordjournals.jbchem.a129324 CrossRefGoogle Scholar
  57. Mega T, Ikenaka T, Matsushima Y (1972) Studies on N-acetyl-β-d-glucosaminidase of Aspergillus oryzae.II Substrate specificity of the enzyme. J Biochem 71:107–114.  https://doi.org/10.1093/oxfordjournals.jbchem.a129731 CrossRefPubMedGoogle Scholar
  58. Merritt JH, Ollis AA, Fisher AC, DeLisa M (2013) Glycans-by-design: engineering bacteria for the biosynthesis of complex glycans and glycoconjugates. Biotechnol Bioeng 110:1550–1564.  https://doi.org/10.1002/bit.24885 CrossRefPubMedGoogle Scholar
  59. Mimura Y, Katoh T, Saldova R, O’Flaherty R, Izumi T, Mimura-Kimura Y, Utsunomiya T, Mizukami Y, Yamamoto K, Matsumoto T, Rudd PM (2018) Glycosylation engineering of therapeutic IgG antibodies: challenges for the safety, functionality and efficacy. Protein Cell 9:47–62.  https://doi.org/10.1007/s13238-017-0433-3 CrossRefPubMedGoogle Scholar
  60. Miranda PV, González-Echeverría F, Blaquier JA, Mahuran DJ, Tezón JG (2000) Evidence for the participation of β-hexosaminidase in human sperm-zona pellucida interaction in vitro. Mol Hum Reprod 6:699–706.  https://doi.org/10.1093/molehr/6.8.699 CrossRefPubMedGoogle Scholar
  61. Molodtsov NV, Vafina MG (1974) Carbohydrases with unusual specificities. II. A hydrolase that splits p-nitrophenyl 2-deoxy-2-glycylamido-β-D-glucopyranoside: Distribution in certain mushrooms. Int J Biochem 5:239–240.  https://doi.org/10.1016/0020-711X(74)90086-X CrossRefGoogle Scholar
  62. Muramatsu T (1968) N-Acetylhexosaminidases form a gastropod, Turbo cornutus. J Biochem 64:521–531.  https://doi.org/10.1093/oxfordjournals.jbchem.a128925 CrossRefPubMedGoogle Scholar
  63. Ngo DN, Lee SH, Kim MM, Kim SK (2009) Production of chitin oligosaccharides with different molecular weights and their antioxidant effect in RAW 264.7 cells. J Funct Foods 1:188–198.  https://doi.org/10.1016/j.jff.2009.01.008 CrossRefGoogle Scholar
  64. Nidetzky B, Gutmann A, Zhong C (2018) Leloir glycosyltransferases as biocatalysts for chemical production. ACS Catal 8:6283–6300.  https://doi.org/10.1021/acscatal CrossRefGoogle Scholar
  65. Nieder V, Kutzer M, Kren V, Gutiérrez Gallego R, Kamerling JP, Elling L (2004) Screening and characterization of β-N-acetylhexosaminidases for the synthesis of nucleotide-activated disaccharides. Enzym Microb Technol 34:407–414.  https://doi.org/10.1016/j.enzmictec.2003.11.017 CrossRefGoogle Scholar
  66. Nilsson KGI (1988) A simple strategy for changing the regioselectivity of glycosidase-catalysed formation of disaccharides: Part II, enzymic synthesis in situ of various acceptor glycosides. Carbohydr Res 180:53–59.  https://doi.org/10.1016/0008-6215(88)80063-6 CrossRefGoogle Scholar
  67. Nilsson KGI (1990) Enzymic synthesis of HexNAc-containing disaccharide glycosides. Carbohydr Res 1990(204):79–83.  https://doi.org/10.1016/0008-6215(90)84022-M CrossRefGoogle Scholar
  68. Noach A, Pluvinage B, Laurie C, Abe KT, Alteen MG, Alteen MG, Vocadlo DJ, Boraston AB (2016) The details of glycolipid glycan hydrolysis by the structural analysis of a family 123 glycoside hydrolase from Clostridium perfringens. J Mol Biol 428:3253–3265.  https://doi.org/10.1016/j.jmb.2016.03.020 CrossRefPubMedGoogle Scholar
  69. Nyffenegger C, Thorbjorn Nordvang R, Zeuner B, Łężyk M, Difilippo E, Logtenberg MJ, Schols HA, Meyer AS, Dalgaard Mikkelsen J (2015) Backbone structures in human milk oligosaccharides: trans-glycosylation by metagenomic β-N-acetylhexosaminidases. Appl Microbiol Biotechnol 99:7997–8009.  https://doi.org/10.1007/s00253-015-6550-0 CrossRefPubMedGoogle Scholar
  70. Pan SC, Nicholson LW, Kolachov P (1951) Isolation of a crystalline trisaccharide from the unfermentable carbohydrate produced enzymically from maltose. J Am Chem Soc 73:2547–2550.  https://doi.org/10.1021/ja01150a039 CrossRefGoogle Scholar
  71. Pazur JH (1953) The enzymatic conversion of lactose into galactosyl oligosaccharides. Science 117:355–356.  https://doi.org/10.1126/science.117.3040.355 CrossRefPubMedGoogle Scholar
  72. Rajnochová E, Dvořáková J, Huňková Z, Křen V (1997) Reverse hydrolysis catalysed by β-N-acetylhexosaminidase from Aspergillus oryzae. Biotechnol Lett 19:869–872.  https://doi.org/10.1023/A:1018385520155 CrossRefGoogle Scholar
  73. Rauvolfová J, Kuzma M, Weignerová L, Fialová P, Přikrylová V, Pišvejcová A, Macková M, Křen V (2004a) β-N-Acetylhexosaminidase-catalysed synthesis of non-reducing oligosaccharides. J Mol Catal B Enzym 29:233–239.  https://doi.org/10.1016/j.molcatb.2003.10.008 CrossRefGoogle Scholar
  74. Rauvolfová J, Weignerová L, Kuzma M, Přikrylová V, Pišvejcová A, Macková M, Křen V (2004b) Enzymatic synthesis of N-acetylglucosaminobioses by reverse hydrolysis: Characterisation and application of the library of fungal β-N-acetylhexosaminidases. J Mol Catal B Enzym 29:259–264.  https://doi.org/10.1016/j.molcatb.2004.02.007 CrossRefGoogle Scholar
  75. Riva S, Chopineau J, Kieboom APG, Klibanov AM (1988) Protease-catalyzed regioselective esterification of sugars and related compounds in anhydrous dimethylformamide. J Am Chem Soc 110:584–589.  https://doi.org/10.1021/ja00210a045 CrossRefGoogle Scholar
  76. Roth C, Petricevic M, John A, Goddard-Borger ED, Davies GJ, Williams SJ (2016) Structural and mechanistic insights into a Bacteroides vulgatus retaining N-acetyl-β-galactosaminidase that uses neighbouring group participation. Chem Commun 52:11096–11099.  https://doi.org/10.1039/C6CC04649E CrossRefGoogle Scholar
  77. Roth C, Chan S, Offen WA, Hemsworth GR, Willems LI, King DT, Varghese V, Britton R, Vocadlo DJ, Davies GJ (2017) Structural and functional insight into human O-GlcNAcase. Nat Chem Biol 13:610–612.  https://doi.org/10.1038/nchembio.2358 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Ryšlavá H, Kalendová A, Doubnerová V, Skočdopol P, Kumar V, Kukačka Z, Pompach P, Vaněk O, Slámová K, Bojarová P, Kulík N, Ettrich R, Křen V, Bezouška K (2011) Enzymatic characterization and molecular modeling of an evolutionarily interesting fungal β-N-acetylhexosaminidase. FEBS J 278:2469–2484.  https://doi.org/10.1111/j.1742-4658.2011.08173.x CrossRefPubMedGoogle Scholar
  79. Šimonová A, Kupper CE, Böcker S, Müller A, Hofbauerová K, Pelantová H, Elling L, Křen V, Bojarová P (2014) Chemo-enzymatic synthesis of LacdiNAc dimers of varying length as novel galectin ligands. J Mol Catal B Enzym 101:47–55.  https://doi.org/10.1016/j.molcatb.2013.12.018 CrossRefGoogle Scholar
  80. Slámová K, Bojarová P (2017) Engineered N-acetylhexosamine-active enzymes in glycoscience. Biochim Biophys Acta Gen Subj 1861:2070–2087.  https://doi.org/10.1016/j.bbagen.2017.03.019 CrossRefPubMedGoogle Scholar
  81. Slámová K, Bojarová P, Petrásková L, Křen V (2010a) β-N-Acetylhexosaminidase: What’s in a name...? Biotechnol Adv 28:682–693.  https://doi.org/10.1016/j.biotechadv.2010.04.004 CrossRefPubMedGoogle Scholar
  82. Slámová K, Gažák R, Bojarová P, Kulik N, Ettrich R, Pelantová H, Sedmera P, Křen V (2010b) 4-Deoxy-substrates for β-N-acetylhexosaminidases: How to make use of its loose specificity. Glycobiology 20:1002–1009.  https://doi.org/10.1093/glycob/cwq058 CrossRefPubMedGoogle Scholar
  83. Slámová K, Kulik N, Fiala M, Krejzová-Hofmeisterová J, Ettrich R, Křen V (2014) Expression, characterization and homology modeling of a novel eukaryotic GH84 β-N-acetylglucosaminidase from Penicillium chrysogenum. Protein Expr Purif 95:204–210.  https://doi.org/10.1016/j.pep.2014.01.002 CrossRefPubMedGoogle Scholar
  84. Slámová K, Krejzová J, Marhol P, Kalachova L, Kulik N, Pelantová H, Cvačka J, Křen V (2015) Synthesis of derivatized chitooligomers using transglycosidases engineered from the fungal GH20 β-N-Acetylhexosaminidase. Adv Synth Catal 357:1941–1950.  https://doi.org/10.1002/adsc.201500075 CrossRefGoogle Scholar
  85. Sumida T, Fujimoto K, Ito M (2011) Molecular cloning and catalytic mechanism of a novel glycosphingolipid-degrading β-N-acetylgalactosaminidase from Paenibacillus sp. TS12. J Biol Chem 286:14065–14072.  https://doi.org/10.1074/jbc.M110.182592 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Tegl G, Hanson J, Chen HM, Kwan DH, Santana AG, Withers SG (2019) Facile formation of β-thioGlcNAc linkages to thiol-containing sugars, peptides, and proteins using a mutant GH20 hexosaminidase. Angew Chem Int Ed Eng 58:1632–1637.  https://doi.org/10.1002/anie.201809928 CrossRefGoogle Scholar
  87. Tews I, Perrakis A, Oppenheim A, Dauter Z, Wilson KS, Vorgias CE (1996) Bacterial chitobiase structure provides insight into catalytic mechanism and the basis of Tay-Sachs disease. Nat Struct Biol 3:638–648.  https://doi.org/10.1038/nsb0796-638 CrossRefPubMedGoogle Scholar
  88. Tolborg JF, Petersen L, Jensen KJ, Mayer C, Jakeman DL, Warren RAJ, Withers SG (2002) Solid-phase oligosaccharide and glycopeptide synthesis using glycosynthases. J Organomet Chem 67:4143–4149.  https://doi.org/10.1021/jo0163445 CrossRefGoogle Scholar
  89. Umekawa M, Huang W, Li B, Fujita K, Ashida H, Wang LX, Yamamoto K (2008) Mutants of Mucor hiemalis endo-β-N-acetylglucosaminidase show enhanced transglycosylation and glycosynthase-like activities. J Biol Chem 283:4469–4479.  https://doi.org/10.1074/jbc.M707137200 CrossRefPubMedGoogle Scholar
  90. van Delft FL, van Geel R, Wijdeven MA, Heesbeen R (2015) Process for the attachment of a GalNAc moiety comprising a (hetero)aryl group to a GlcNAc moiety, and product obtained thereby. World Patent WO 2015112013A1.Google Scholar
  91. Vocadlo DJ, Withers SG (2005) Detailed comparative analysis of the catalytic mechanisms of β-N-acetylglucosaminidases from families 3 and 20 of glycoside hydrolases. Biochemistry 44:12809–12818.  https://doi.org/10.1021/bi051121k CrossRefPubMedGoogle Scholar
  92. Vocadlo DJ, Mayer C, He S, Withers SG (2000) Mechanism of action and identification of Asp242 as the catalytic nucleophile of Vibrio furnisii N-acetyl-β-d-glucosaminidase using 2-acetamido-2-deoxy-5-fluoro-R-L-idopyranosyl fluoride. Biochemistry 39:117–126.  https://doi.org/10.1021/bi991958d CrossRefPubMedGoogle Scholar
  93. Wang T, Demchenko AV (2019) Synthesis of carbohydrate building blocks via regioselective uniform protection/deprotection strategies. Org Biomol Chem 17:4934–4950.  https://doi.org/10.1039/C9OB00573K CrossRefPubMedPubMedCentralGoogle Scholar
  94. Wang Z, Zheng L, Yang S, Niu R, Chu E, Lin X (2007) N-Acetylchitooligosaccharide is a potent angiogenic inhibitor both in vivo and in vitro. Biochem Biophys Res Commun 357:26–31.  https://doi.org/10.1016/j.bbrc.2007.03.094 CrossRefPubMedGoogle Scholar
  95. Wasiel AA, van Delft FL, Van Berkel SS (2016) Process for the modification of a glycoprotein using a β(1,4)-N-acetylgalactosaminyltransferase or a mutant thereof. World Patent WO2016022027A1 2016 Feb 11Google Scholar
  96. Weignerová L, Suzuki Y, Huňková Z, Sedmera P, Havlíček V, Marek R, Křen V (1999) Pyridoxine as a substrate for screening synthetic potential of glycosidases. Collect Czechoslov Chem Commun 64:1325–1334.  https://doi.org/10.1135/cccc19991325 CrossRefGoogle Scholar
  97. Weignerová L, Vavrušková P, Pišvejcová A, Thiem J, Křen V (2003) Fungal β-N-acetylhexosaminidases with high β-N-acetylgalactosaminidase activity and their use for synthesis of β-GalNAc-containing oligosaccharides. Carbohydr Res 338:1003–1008.  https://doi.org/10.1016/S0008-6215(03)00044-2 CrossRefPubMedGoogle Scholar
  98. Weignerová L, Pelantová H, Manglová D, Michálková K, Křen V (2010) Condensation reactions catalyzed by α-N-acetylgalactosaminidase from Aspergillus niger yielding α-N-acetylgalactosaminides. Biocat Biotrans 28:150–155.  https://doi.org/10.3109/10242421003587227 CrossRefGoogle Scholar
  99. Williams SJ, Withers SG (2000) Glycosyl fluorides in enzymatic reactions. Carbohydr Res 327:27–46.  https://doi.org/10.1016/S0008-6215(00)00041-0 CrossRefPubMedGoogle Scholar
  100. Williams SJ, Mark BL, Vocadlo DJ, James MNG, Withers SG (2002) Aspartate 313 in the Streptomyces plicatus hexosaminidase plays a critical role in substrate-assisted catalysis by orienting the 2-acetamido group and stabilizing the transition state. J Biol Chem 277:0055–40065.  https://doi.org/10.1074/jbc.M206481200 CrossRefGoogle Scholar
  101. Yamamoto K (1973) N-Acyl specificity of taka-N-acetyl-β-d-glucosaminidase studied by synthetic substrate analogs: II. Preparation of some p-nitrophenyl 2-halogenoacetylamino-2-deoxy-β-d-glucopyranosides and their susceptibility to enzymic hydrolysis. J Biochem (Tokyo) 73:749–753.  https://doi.org/10.1093/oxfordjournals.jbchem.a130137 CrossRefGoogle Scholar
  102. Yang Q, An Y, Zhu S, Zhang R, Loke CM, Cipollo JF, Wang L-X (2017) Glycan remodeling of human erythropoietin (EPO) through combined mammalian cell engineering and chemoenzymatic transglycosylation. ACS Chem Biol 12:1665–1673.  https://doi.org/10.1021/acschembio.7b00282 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Yang W, Ramadan S, Orwenyo J, Kakeshpour T, Diaz T, Eken Y, Sanda M, Jackson JE, Wilson AK, Huang X (2018) Chemoenzymatic synthesis of glycopeptides bearing rare N-glycan sequences with or without bisecting GlcNAc. Chem Sci 9:8194–8206.  https://doi.org/10.1039/C8SC02457J CrossRefPubMedPubMedCentralGoogle Scholar
  104. Young DD, Nichols J, Kelly RM, Deiters A (2008) Microwave activation of enzymatic catalysis. J Am Chem Soc 130:10048–10049.  https://doi.org/10.1021/ja802404g CrossRefPubMedGoogle Scholar
  105. Yuzwa SA, Macauley MS, Heinonen JE, Shan X, Dennis RJ, He Y, Whitworth GE, Stubbs KA, McEachern EJ, Davies GJ, Vocadlo DJ (2008) A potent mechanism inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. Nat Chem Biol 4:483–490.  https://doi.org/10.1038/nchembio.96 CrossRefPubMedGoogle Scholar
  106. Zaks A, Klibanov AM (1985) Enzyme-catalyzed processes in organic solvents. Proc Natl Acad Sci U S A 82:3192–3196.  https://doi.org/10.1073/pnas.82.10.3192 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Zinin AI, Eneyskaya EV, Shabalin KA, Kulminskaya AA, Shishlyannikov SM, Neustroev KN (2002) 1-O-Acetyl-β-D-galactopyranose: a novel substrate for the transglycosylation reaction catalyzed by the β-galactosidase from Penicillium sp. Carbohydr Res 337:635–642.  https://doi.org/10.1016/S0008-6215(02)00027-7 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Biotransformation, Institute of MicrobiologyCzech Academy of SciencesPraha 4Czech Republic
  2. 2.Department of Health Care Disciplines and Population Protection, Faculty of Biomedical EngineeringCzech Technical University in PragueKladnoCzech Republic
  3. 3.Department of Biomedical Technology, Faculty of Biomedical EngineeringCzech Technical University in PragueKladnoCzech Republic

Personalised recommendations