Systems biology approach in the formulation of chemically defined media for recombinant protein overproduction

  • Iman Shahidi Pour Savizi
  • Tooba Soudi
  • Seyed Abbas ShojaosadatiEmail author


The cell culture medium is an intricate mixture of components which has a tremendous effect on cell growth and recombinant protein production. Regular cell culture medium includes various components, and the decision about which component should be included in the formulation and its optimum amount is an underlying issue in biotechnology industries. Applying conventional techniques to design an optimal medium for the production of a recombinant protein requires meticulous and immense research. Moreover, since the medium formulation for the production of one protein could not be the best choice for another protein, hence, the most suitable media should be determined for each recombinant cell line. Accordingly, medium formulation becomes a laborious, time-consuming, and costly process in biomanufacturing of recombinant protein, and finding alternative strategies for medium development seems to be crucial. In silico modeling is an attractive concept to be adapted for medium formulation due to its high potential to supersede laboratory examinations. By emerging the high-throughput datasets, scientists can disclose the knowledge about the effect of medium components on cell growth and metabolism, and via applying this information through systems biology approach, medium formulation optimization could be accomplished in silico with no need of significant amount of experimentation. This review demonstrates some of the applications of systems biology as a powerful tool for medium development and illustrates the effect of medium optimization with system-level analysis on the production of recombinant proteins in different host cells.


System biology Medium formulation Recombinant protein production 


Funding information

This study was funded by the Tarbiat Modares University (Grant No. IG-39702).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Aghaeepoor M, Akbarzadeh A, Kobarfard F, Shabani AA, Dehnavi E, Jamshidi Aval S, Akbari Eidgahi MR (2019) Optimization and high level production of recombinant synthetic streptokinase in E. coli using response surface methodology. Iran J Pharm Res.
  2. Almo SC, Love JD (2014) Better and faster: improvements and optimization for mammalian recombinant protein production. Curr Opin Struct Biol 26:39–43. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Altamirano C, Illanes A, Becerra S, Cairó JJ, Gòdia F (2006) Considerations on the lactate consumption by CHO cells in the presence of galactose. J Biotechnol 125(4):547–556. CrossRefPubMedGoogle Scholar
  4. Antoniewicz MR (2013) Dynamic metabolic flux analysis—tools for probing transient states of metabolic networks. Curr Opin Biotechnol 24(6):973–978. CrossRefPubMedGoogle Scholar
  5. Azadi S, Sadjady S, Mortazavi S, Naghdi N, Mahboubi A, Solaimanian R (2018) Bioprocess and downstream optimization of recombinant human growth hormone in Pichia pastoris. Res Pharm Sci 13(3):222–238. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Babaeipour V, Shojaosadati SA, Khalilzadeh R, Maghsoudi N, Tabandeh F (2008) A proposed feeding strategy for the overproduction of recombinant proteins in Escherichia coli. Biotechnol Appl Biochem 49(2):141–147. CrossRefPubMedGoogle Scholar
  7. Bahrami A, Shojaosadati SA, Khalilzadeh R, Farahani EV (2008) Two-stage glycerol feeding for enhancement of recombinant hG-CSF production in a fed-batch culture of Pichia pastoris. Biotechnol Lett 30(6):1081–1085. CrossRefPubMedGoogle Scholar
  8. Broedel JS, Papciak SM, Jones WR. (2001) The selection of optimum media formulations for improved expression of recombinant proteins in E. coli, vol 2Google Scholar
  9. Brühlmann D, Jordan M, Hemberger J, Sauer M, Stettler M, Broly H (2015) Tailoring recombinant protein quality by rational media design. Biotechnol Prog 31(3):615–629. CrossRefPubMedGoogle Scholar
  10. Burgard J, Valli M, Graf AB, Gasser B, Mattanovich D (2017) Biomarkers allow detection of nutrient limitations and respective supplementation for elimination in Pichia pastoris fed-batch cultures. Microb Cell Factories 16(1):117. CrossRefGoogle Scholar
  11. Calmels C, McCann A, Malphettes L, Andersen MR (2019) Application of a curated genome-scale metabolic model of CHO DG44 to an industrial fed-batch process. Metab Eng 51:9–19. CrossRefPubMedGoogle Scholar
  12. Carneiro S, Ferreira EC, Rocha I (2013) Metabolic responses to recombinant bioprocesses in Escherichia coli. J Biotechnol 164(3):396–408. CrossRefPubMedGoogle Scholar
  13. Carnicer M, Baumann K, Töplitz I, Sánchez-Ferrando F, Mattanovich D, Ferrer P, Albiol J (2009) Macromolecular and elemental composition analysis and extracellular metabolite balances of Pichia pastoris growing at different oxygen levels. Microb Cell Factories 8(1):65. CrossRefGoogle Scholar
  14. Carnicer M, ten Pierick A, van Dam J, Heijnen JJ, Albiol J, van Gulik W, Ferrer P (2012) Quantitative metabolomics analysis of amino acid metabolism in recombinant Pichia pastoris under different oxygen availability conditions. Microb Cell Factories 11(1):83. CrossRefGoogle Scholar
  15. Caspeta L, Shoaie S, Agren R, Nookaew I, Nielsen J (2012) Genome-scale metabolic reconstructions of Pichia stipitis and Pichia pastoris and in silico evaluation of their potentials. BMC Syst Biol 6(1):24. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chen P, Harcum SW (2005) Effects of amino acid additions on ammonium stressed CHO cells. J Biotechnol 117(3):277–286. CrossRefPubMedGoogle Scholar
  17. Choi JH, Lee SY (2004) Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol 64(5):625–635. CrossRefPubMedGoogle Scholar
  18. Chou CP (2007) Engineering cell physiology to enhance recombinant protein production in Escherichia coli. Appl Microbiol Biotechnol 76(3):521–532. CrossRefPubMedGoogle Scholar
  19. Chrysanthopoulos PK, Goudar CT, Klapa MI (2010) Metabolomics for high-resolution monitoring of the cellular physiological state in cell culture engineering. Metab Eng 12(3):212–222. CrossRefPubMedGoogle Scholar
  20. Chung BK, Selvarasu S, Andrea C, Ryu J, Lee H, Ahn J, Lee H, Lee D-Y (2010) Genome-scale metabolic reconstruction and in silico analysis of methylotrophic yeast Pichia pastoris for strain improvement. Microb Cell Factories 9:50–50. CrossRefGoogle Scholar
  21. Clarke C, Doolan P, Barron N, Meleady P, O’Sullivan F, Gammell P, Melville M, Leonard M, Clynes M (2011) Large scale microarray profiling and coexpression network analysis of CHO cells identifies transcriptional modules associated with growth and productivity. J Biotechnol 155(3):350–359. CrossRefPubMedGoogle Scholar
  22. Davami F, Eghbalpour F, Nematollahi L, Barkhordari F, Mahboudi F (2015) Effects of peptone supplementation in different culture media on growth, metabolic pathway and productivity of CHO DG44 cells a new insight into amino acid profiles. Iran Biomed J 19(4):194–205. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Denes Z, Aydin G, Patrick W, Akos P, Christoph H (2015) Advanced development strategies for biopharmaceutical cell culture processes. Curr Pharm Biotechnol 16(11):983–1001. CrossRefGoogle Scholar
  24. Dickson AJ (2014) Enhancement of production of protein biopharmaceuticals by mammalian cell cultures: the metabolomics perspective. Curr Opin Biotechnol 30:73–79. CrossRefPubMedGoogle Scholar
  25. Dietmair S, Hodson MP, Quek L-E, Timmins NE, Chrysanthopoulos P, Jacob SS, Gray P, Nielsen LK (2012) Metabolite profiling of CHO cells with different growth characteristics. Biotechnol Bioeng 109(6):1404–1414. CrossRefPubMedGoogle Scholar
  26. Dragosits M, Mattanovich D, Gasser B (2011) Chapter Ten—Induction and measurement of UPR and osmotic stress in the yeast Pichia pastoris. In: Conn PM (ed) Methods in enzymology. vol 489. Academic, pp. 165–188Google Scholar
  27. Duarte TM, Carinhas N, Barreiro LC, Carrondo MJT, Alves PM, Teixeira AP (2014) Metabolic responses of CHO cells to limitation of key amino acids. Biotechnol Bioeng 111(10):2095–2106. CrossRefPubMedGoogle Scholar
  28. Elibol M (2004) Optimization of medium composition for actinorhodin production by Streptomyces coelicolor A3(2) with response surface methodology. Process Biochem 39(9):1057–1062. CrossRefGoogle Scholar
  29. Emenike VN, Schenkendorf R, Krewer U (2018) Model-based optimization of biopharmaceutical manufacturing in Pichia pastoris based on dynamic flux balance analysis. Comput Chem Eng 118:1–13. CrossRefGoogle Scholar
  30. Fan Y, Jimenez Del Val I, Müller C, Wagtberg Sen J, Rasmussen SK, Kontoravdi C, Weilguny D, Andersen MR (2015) Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation. Biotechnol Bioeng 112(3):521–535. CrossRefPubMedGoogle Scholar
  31. Feeney L, Carvalhal V, Yu XC, Chan B, Michels DA, Wang YJ, Shen A, Ressl J, Dusel B, Laird MW (2013) Eliminating tyrosine sequence variants in CHO cell lines producing recombinant monoclonal antibodies. Biotechnol Bioeng 110(4):1087–1097. CrossRefPubMedGoogle Scholar
  32. Fürch T, Wittmann C, Wang W, Franco-Lara E, Jahn D, Deckwer W-D (2007) Effect of different carbon sources on central metabolic fluxes and the recombinant production of a hydrolase from Thermobifida fusca in Bacillus megaterium. J Biotechnol 132(4):385–394. CrossRefPubMedGoogle Scholar
  33. Gagnon M, Hiller G, Luan Y-T, Kittredge A, DeFelice J, Drapeau D (2011) High-End pH-controlled delivery of glucose effectively suppresses lactate accumulation in CHO Fed-batch cultures. Biotechnol Bioeng 108(6):1328–1337. CrossRefPubMedGoogle Scholar
  34. Galbraith SC, Bhatia H, Liu H, Yoon S (2018) Media formulation optimization: current and future opportunities. Curr Opin Chem Eng 22:42–47. CrossRefGoogle Scholar
  35. Gasmi N, Ayed A, Nicaud J-M, Kallel H (2011) Design of an efficient medium for heterologous protein production in Yarrowia lipolytica: case of human interferon alpha 2b. Microb Cell Factories 10(1):38. CrossRefGoogle Scholar
  36. Ghorbaniaghdam A, Chen J, Henry O, Jolicoeur M (2014) Analyzing clonal variation of monoclonal antibody-producing CHO cell lines using an in silico metabolomic platform. PLoS One 9(3):e90832. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Gmeiner C, Spadiut O (2015) Effects of different media supplements on the production of an active recombinant plant peroxidase in a Pichia pastoris Δoch1 strain. Bioengineered 6(3):175–178. CrossRefPubMedPubMedCentralGoogle Scholar
  38. González-Cervantes R, Islas L, Obregon AM, Escalante L, Sánchez S (1995) Gentamicin formation in Micromonospora purpurea: stimulatory effect of ammonium, vol 48Google Scholar
  39. Goodman M (2009) Pharmaceutical industry financial performance. Nat Rev Drug Discov 8:927–928. CrossRefPubMedGoogle Scholar
  40. Goudarzi Z, Shojaosadati SA, Hassan Sajedi R, Maghsoudi A (2016) Optimization of auto-induction conditions for the heterologous expression of a maltogenic amylase in Escherichia coli. Appl Food Biotechnol 3(2):105–113. CrossRefGoogle Scholar
  41. Gupta P, Lee KH (2007) Genomics and proteomics in process development: opportunities and challenges. Trends Biotechnol 25(7):324–330. CrossRefPubMedGoogle Scholar
  42. Gupte MD, Kulkarni PR (2002) A study of antifungal antibiotic production by Streptomyces chattanoogensis MTCC 3423 using full factorial design. Lett Appl Microbiol 35(1):22–26. CrossRefPubMedGoogle Scholar
  43. Han JY, Seo SH, Song JM, Lee H, Choi E-S (2018) High-level recombinant production of squalene using selected Saccharomyces cerevisiae strains. J Ind Microbiol Biotechnol 45(4):239–251. CrossRefPubMedGoogle Scholar
  44. Hansen ASL, Lennen RM, Sonnenschein N, Herrgård MJ (2017) Systems biology solutions for biochemical production challenges. Curr Opin Biotechnol 45:85–91. CrossRefPubMedGoogle Scholar
  45. Harcum SW, Ramirez DM, Bentley WE (1992) Optimal nutrient feed policies for heterologous protein production. Appl Biochem Biotechnol 34(1):161–173. CrossRefGoogle Scholar
  46. Hefzi H, Ang KS, Hanscho M, Bordbar A, Ruckerbauer D, Lakshmanan M, Orellana CA, Baycin-Hizal D, Huang Y, Ley D, Martinez VS, Kyriakopoulos S, Jiménez NE, Zielinski DC, Quek L-E, Wulff T, Arnsdorf J, Li S, Lee JS, Paglia G, Loira N, Spahn PN, Pedersen LE, Gutierrez JM, King ZA, Lund AM, Nagarajan H, Thomas A, Abdel-Haleem AM, Zanghellini J, Kildegaard HF, Voldborg BG, Gerdtzen ZP, Betenbaugh MJ, Palsson BO, Andersen MR, Nielsen LK, Borth N, Lee D-Y, Lewis NE (2016) A consensus genome-scale reconstruction of Chinese hamster ovary cell metabolism. Cell Syst 3(5):434–443.e8. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Heyland J, Fu J, Blank LM, Schmid A (2011) Carbon metabolism limits recombinant protein production in Pichia pastoris. Biotechnol Bioeng 108(8):1942–1953. CrossRefPubMedGoogle Scholar
  48. Hitchcock AG, Williams SG, Selas Castiñeiras T, Smith DC (2018) E. coli strain engineering for the production of advanced biopharmaceutical products. FEMS Microbiol Lett 365(15).
  49. Huang Z, Lee D-Y, Yoon S (2017) Quantitative intracellular flux modeling and applications in biotherapeutic development and production using CHO cell cultures. Biotechnol Bioeng 114(12):2717–2728. CrossRefPubMedGoogle Scholar
  50. Idiris A, Tohda H, Kumagai H, Takegawa K (2010) Engineering of protein secretion in yeast: strategies and impact on protein production. Appl Microbiol Biotechnol 86(2):403–417. CrossRefPubMedGoogle Scholar
  51. Ikehata K, Pickard MA, Buchanan ID, Smith DW (2004) Optimization of extracellular fungal peroxidase production by 2 Coprinus species. Can J Microbiol 50(12):1033–1040. CrossRefPubMedGoogle Scholar
  52. Irani ZA, Kerkhoven EJ, Shojaosadati SA, Nielsen J (2016) Genome-scale metabolic model of Pichia pastoris with native and humanized glycosylation of recombinant proteins. Biotechnol Bioeng 113(5):961–969. CrossRefPubMedGoogle Scholar
  53. Irani ZA, Maghsoudi A, Shojaosadati SA, Motamedian E (2015) Development and in silico analysis of a new nitrogen-limited feeding strategy for fed-batch cultures of Pichia pastoris based on a simple pH-control system. Biochem Eng J 98:1–9. CrossRefGoogle Scholar
  54. Isidro IA, Portela RM, Clemente JJ, Cunha AE, Oliveira R (2016) Hybrid metabolic flux analysis and recombinant protein prediction in Pichia pastoris X-33 cultures expressing a single-chain antibody fragment. Bioprocess Biosyst Eng 39(9):1351–1363. CrossRefPubMedGoogle Scholar
  55. Ivarsson M, Noh H, Morbidelli M, Soos M (2015) Insights into pH-induced metabolic switch by flux balance analysis. Biotechnol Prog 31(2):347–357. CrossRefPubMedGoogle Scholar
  56. Jayapal K, Wlaschin KF, Hu WS, Yap MGS (2007) Recombinant protein therapeutics from CHO cells—20 years and counting, vol 103Google Scholar
  57. Jia B, Jeon Che O (2016) High-throughput recombinant protein expression in Escherichia coli: current status and future perspectives. Open Biol 6(8):160196. CrossRefPubMedPubMedCentralGoogle Scholar
  58. Johnson CH, Ivanisevic J, Siuzdak G (2016) Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol 17(7):451–459. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Jürgen B, Lin HY, Riemschneider S, Scharf C, Neubauer P, Schmid R, Hecker M, Schweder T (2000) Monitoring of genes that respond to overproduction of an insoluble recombinant protein in Escherichia coli glucose-limited fed-batch fermentations. Biotechnol Bioeng 70(2):217–224.<217::AID-BIT11>3.0.CO;2-W CrossRefPubMedGoogle Scholar
  60. Kennedy M, Krouse D (1999) Strategies for improving fermentation medium performance: a review. J Ind Microbiol Biotechnol 23(6):456–475. CrossRefGoogle Scholar
  61. Khalilzadeh R, Shojaosadati SA, Bahrami A, Maghsoudi N (2003) Over-expression of recombinant human interferon-gamma in high cell density fermentation of Escherichia coli. Biotechnol Lett 25(23):1989–1992. CrossRefPubMedGoogle Scholar
  62. Kuo C-C, Chiang AWT, Shamie I, Samoudi M, Gutierrez JM, Lewis NE (2018) The emerging role of systems biology for engineering protein production in CHO cells. Curr Opin Biotechnol 51:64–69. CrossRefPubMedGoogle Scholar
  63. Kuwae S, Miyakawa I, Doi T (2018) Development of a chemically defined platform fed-batch culture media for monoclonal antibody-producing CHO cell lines with optimized choline content. Cytotechnology 70(3):939–948. CrossRefPubMedPubMedCentralGoogle Scholar
  64. Larance M, Lamond AI (2015) Multidimensional proteomics for cell biology. Nat Rev Mol Cell Biol 16:269–280. CrossRefPubMedGoogle Scholar
  65. Lee HW, Christie A, Starkey JA, Read EK, Yoon S (2015) Intracellular metabolic flux analysis of CHO cells supplemented with wheat hydrolysates for improved mAb production and cell-growth. J Chem Technol Biotechnol 90(2):291–302. CrossRefGoogle Scholar
  66. Lewis AM, Abu-Absi NR, Borys MC, Li ZJ (2016) The use of ’omics technology to rationally improve industrial mammalian cell line performance. Biotechnol Bioeng 113(1):26–38. CrossRefPubMedGoogle Scholar
  67. Liu X, Niu H, Li Q, Gu P (2019) Metabolic engineering for the production of l-phenylalanine in Escherichia coli. 3. Biotech 9(3):85. CrossRefGoogle Scholar
  68. Ljunggren J, Häggström L (1994) Catabolic control of hybridoma cells by glucose and glutamine limited fed batch cultures. Biotechnol Bioeng 44(7):808–818. CrossRefPubMedGoogle Scholar
  69. Looser V, Bruhlmann B, Bumbak F, Stenger C, Costa M, Camattari A, Fotiadis D, Kovar K (2015) Cultivation strategies to enhance productivity of Pichia pastoris: a review. Biotechnol Adv 33(6, Part 2):1177–1193. CrossRefPubMedGoogle Scholar
  70. Lourenço A, Carneiro S, Pinto José P, Rocha M, Ferreira Eugénio C, Rocha I (2011) A study of the short and long-term regulation of E. coli metabolic pathways. J Integr Bioinform 8(3):195. CrossRefGoogle Scholar
  71. Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T (2017) Transcriptomics technologies. PLoS Comp Biol 13(5):e1005457. CrossRefGoogle Scholar
  72. Mahalik S, Sharma AK, Mukherjee KJ (2014) Genome engineering for improved recombinant protein expression in Escherichia coli. Microb Cell Factories 13:177–177. CrossRefGoogle Scholar
  73. Mandenius C-F (2016) Design-of-experiments for development and optimization of bioreactor media: design, operation and novel applications. pp. 421–452Google Scholar
  74. Martínez VS, Buchsteiner M, Gray P, Nielsen LK, Quek L-E (2015) Dynamic metabolic flux analysis using B-splines to study the effects of temperature shift on CHO cell metabolism. Metab Eng Commun 2:46–57. CrossRefGoogle Scholar
  75. Martínez VS, Dietmair S, Quek L-E, Hodson MP, Gray P, Nielsen LK (2013) Flux balance analysis of CHO cells before and after a metabolic switch from lactate production to consumption. Biotechnol Bioeng 110(2):660–666. CrossRefPubMedGoogle Scholar
  76. Matthews CB, Kuo A, Love KR, Love JC (2018) Development of a general defined medium for Pichia pastoris. Biotechnol Bioeng 115(1):103–113. CrossRefPubMedGoogle Scholar
  77. Meadows AL, Karnik R, Lam H, Forestell S, Snedecor B (2010) Application of dynamic flux balance analysis to an industrial Escherichia coli fermentation. Metab Eng 12(2):150–160. CrossRefPubMedGoogle Scholar
  78. Melamed D, Pnueli L, Arava Y (2008) Yeast translational response to high salinity: global analysis reveals regulation at multiple levels. RNA 14(7):1337–1351. CrossRefPubMedPubMedCentralGoogle Scholar
  79. Mohammadi M, Heydari M, Shojaosadati SA, Motamedian E (2016) TRFBA: an algorithm to integrate genome-scale metabolic and transcriptional regulatory networks with incorporation of expression data. Bioinformatics 33(7):1057–1063. CrossRefGoogle Scholar
  80. Mohmad-Saberi SE, Hashim YZH-Y, Mel M, Amid A, Ahmad-Raus R, Packeer-Mohamed V (2013) Metabolomics profiling of extracellular metabolites in CHO-K1 cells cultured in different types of growth media. Cytotechnology 65(4):577–586. CrossRefPubMedGoogle Scholar
  81. Motamedian E, Saeidi M, Shojaosadati SA (2016) Reconstruction of a charge balanced genome-scale metabolic model to study the energy-uncoupled growth of Zymomonas mobilis ZM1. Mol BioSyst 12(4):1241–1249. CrossRefPubMedGoogle Scholar
  82. Mulukutla BC, Kale J, Kalomeris T, Jacobs M, Hiller GW (2017) Identification and control of novel growth inhibitors in fed-batch cultures of Chinese hamster ovary cells. Biotechnol Bioeng 114(8):1779–1790. CrossRefPubMedGoogle Scholar
  83. Nahidian B, Ghanati F, Shahbazi M, Soltani N (2018) Effect of nutrients on the growth and physiological features of newly isolated Haematococcus pluvialis TMU1. Bioresour Technol 255:229–237. CrossRefPubMedGoogle Scholar
  84. Nga Sou S, Jedrzejewski P, Lee K, Sellick C, Polizzi K, Kontoravdi C (2016) Model-based investigation of intracellular processes determining antibody Fc-glycosylation under mild hypothermia, vol 114Google Scholar
  85. Nga Sou S, Sellick C, Lee K, Mason A, Kyriakopoulos S, Polizzi K, Kontoravdi C (2014) How does mild hypothermia affect monoclonal antibody glycosylation? vol 112Google Scholar
  86. Nielsen J (2017) Systems Biology of metabolism. Annu Rev Biochem 86(1):245–275. CrossRefPubMedGoogle Scholar
  87. Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28(3):245–248. CrossRefPubMedPubMedCentralGoogle Scholar
  88. Pan X, Dalm C, Wijffels RH, Martens DE (2017) Metabolic characterization of a CHO cell size increase phase in fed-batch cultures. Appl Microbiol Biotechnol 101(22):8101–8113. CrossRefPubMedPubMedCentralGoogle Scholar
  89. Pandey R, Kumar N, Monteiro GA, Veeranki VD, Prazeres DMF (2018) Re-engineering of an Escherichia coli K-12 strain for the efficient production of recombinant human Interferon Gamma. Enzym Microb Technol 117:23–31. CrossRefGoogle Scholar
  90. Park SJ, Lee SY, Cho J, Kim TY, Lee JW, Park JH, Han MJ (2005) Global physiological understanding and metabolic engineering of microorganisms based on omics studies. Appl Microbiol Biotechnol 68(5):567–579. CrossRefPubMedGoogle Scholar
  91. Pereira B, Miguel J, Vilaça P, Soares S, Rocha I, Carneiro S (2018) Reconstruction of a genome-scale metabolic model for Actinobacillus succinogenes 130Z. BMC Syst Biol 12(1):61–61. CrossRefPubMedPubMedCentralGoogle Scholar
  92. Prielhofer R, Cartwright SP, Graf AB, Valli M, Bill RM, Mattanovich D, Gasser B (2015) Pichia pastoris regulates its gene-specific response to different carbon sources at the transcriptional, rather than the translational, level. BMC Genomics 16(1):167. CrossRefPubMedPubMedCentralGoogle Scholar
  93. Puente-Massaguer E, Badiella L, Gutiérrez-Granados S, Cervera L, Gòdia F (2019) A statistical approach to improve compound screening in cell culture media. Eng Life Sci 19(4):315–327. CrossRefGoogle Scholar
  94. Quek L-E, Dietmair S, Krömer JO, Nielsen LK (2010) Metabolic flux analysis in mammalian cell culture. Metab Eng 12(2):161–171. CrossRefPubMedGoogle Scholar
  95. Quiroga-Campano AL, Panoskaltsis N, Mantalaris A (2018) Energy-based culture medium design for biomanufacturing optimization: a case study in monoclonal antibody production by GS-NS0 cells. Metab Eng 47:21–30. CrossRefPubMedGoogle Scholar
  96. Reinhart D, Damjanovic L, Kaisermayer C, Kunert R (2015) Benchmarking of commercially available CHO cell culture media for antibody production. Appl Microbiol Biotechnol 99(11):4645–4657. CrossRefPubMedPubMedCentralGoogle Scholar
  97. Richelle A, Lewis NE (2017) Improvements in protein production in mammalian cells from targeted metabolic engineering. Curr Opin Syst Biol 6:1–6. CrossRefPubMedPubMedCentralGoogle Scholar
  98. Ritacco FV, Wu Y, Khetan A (2018) Cell culture media for recombinant protein expression in Chinese hamster ovary (CHO) cells: history, key components, and optimization strategies. Biotechnol Prog 34(6):1407–1426. CrossRefPubMedGoogle Scholar
  99. Robitaille J, Chen J, Jolicoeur M (2015) A single dynamic metabolic model can describe mAb producing CHO cell batch and fed-batch cultures on different culture media. PLoS One 10(9):e0136815–e0136815. CrossRefPubMedPubMedCentralGoogle Scholar
  100. Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172–172. CrossRefPubMedPubMedCentralGoogle Scholar
  101. Saitua F, Torres P, Pérez-Correa JR, Agosin E (2017) Dynamic genome-scale metabolic modeling of the yeast Pichia pastoris. BMC Syst Biol 11(1):27–27. CrossRefPubMedPubMedCentralGoogle Scholar
  102. Sarkandy SY, Khalilzadeh R, Shojaosadati SA, Sadeghizadeh M, Farnoud AM, Babaeipour V, Maghsoudi A (2010) A novel amino acid supplementation strategy based on a stoichiometric model to enhance human IL-2 (interleukin-2) expression in high-cell-density Escherichia coli cultures. Biotechnol Appl Biochem 57(4):151–156. CrossRefPubMedGoogle Scholar
  103. Schaub J, Clemens C, Kaufmann H, Schulz TW (2012) Advancing biopharmaceutical process development by system-level data analysis and integration of omics data. In: Hu WS, Zeng A-P (eds) Genomics and systems biology of mammalian cell culture. Springer, Berlin, pp 133–163Google Scholar
  104. Sellick CA, Croxford AS, Maqsood AR, Stephens G, Westerhoff HV, Goodacre R, Dickson AJ (2011) Metabolite profiling of recombinant CHO cells: designing tailored feeding regimes that enhance recombinant antibody production. Biotechnol Bioeng 108(12):3025–3031. CrossRefPubMedGoogle Scholar
  105. Sellick CA, Croxford AS, Maqsood AR, Stephens GM, Westerhoff HV, Goodacre R, Dickson AJ (2015) Metabolite profiling of CHO cells: molecular reflections of bioprocessing effectiveness. Biotechnol J 10(9):1434–1445. CrossRefPubMedGoogle Scholar
  106. Sha S, Huang Z, Wang Z, Yoon S (2018) Mechanistic modeling and applications for CHO cell culture development and production. Curr Opin Chem Eng 22(Biotechnol Bioeng 115 2018):54–61.
  107. Sheikholeslami Z, Jolicoeur M, Henry O (2014) Elucidating the effects of postinduction glutamine feeding on the growth and productivity of CHO cells. Biotechnol Prog 30(3):535–546. CrossRefPubMedGoogle Scholar
  108. Shojaosadati SA, Varedi Kolaei SM, Babaeipour V, Farnoud AM (2008) Recent advances in high cell density cultivation for production of recombinant protein. Iran J Biotechnol 6(2):63–84Google Scholar
  109. Singh V, Haque S, Niwas R, Srivastava A, Pasupuleti M, Tripathi CKM (2017) Strategies for fermentation medium optimization: an in-depth review. Front Microbiol 7:2087–2087. CrossRefPubMedPubMedCentralGoogle Scholar
  110. Sohn SB, Graf AB, Kim TY, Gasser B, Maurer M, Ferrer P, Mattanovich D, Lee SY (2010) Genome-scale metabolic model of methylotrophic yeast Pichia pastoris and its use for in silico analysis of heterologous protein production. Biotechnol J 5(7):705–715. CrossRefPubMedGoogle Scholar
  111. Strutz J, Martin J, Greene J, Broadbelt L, Tyo K (2019) Metabolic kinetic modeling provides insight into complex biological questions, but hurdles remain. Curr Opin Biotechnol 59:24–30. CrossRefPubMedGoogle Scholar
  112. Sugiura T (1992) Effects of glucose on the production of recombinant protein C in mammalian cell culture. Biotechnol Bioeng 39(9):953–959. CrossRefPubMedGoogle Scholar
  113. Tavasoli T, Arjmand S, Ranaei Siadat SO, Shojaosadati SA, Lotfi AS (2017) Enhancement of alpha 1-antitrypsin production in Pichia pastoris by designing and optimizing medium using elemental analysis. Iran J Biotechnol 15(4):224–231. CrossRefPubMedPubMedCentralGoogle Scholar
  114. Tsugawa H (2018) Advances in computational metabolomics and databases deepen the understanding of metabolisms. Curr Opin Biotechnol 54:10–17. CrossRefPubMedGoogle Scholar
  115. Turner C, Gregory ME, Turner MK (1994) A study of the effect of specific growth rate and acetate on recombinant protein production of Escherichia coli JM107. Biotechnol Lett 16(9):891–896. CrossRefGoogle Scholar
  116. Wang H, Dong Y, Wang G, Xu X, Zhou G (2016) Effect of growth media on gene expression levels in Salmonella typhimurium biofilm formed on stainless steel surface. Food Control 59:546–552. CrossRefGoogle Scholar
  117. Wei T, Cheng B-Y, Liu J-Z (2016) Genome engineering Escherichia coli for L-DOPA overproduction from glucose. Sci Rep 6:30080. CrossRefPubMedPubMedCentralGoogle Scholar
  118. Weuster-Botz D (2000) Experimental design for fermentation media development: statistical design or global random search? J Biosci Bioeng 90(5):473–483. CrossRefPubMedGoogle Scholar
  119. Xiao Z, Sabourin M, Piras G, Gorfien SF (2014) Screening and optimization of chemically defined media and feeds with integrated and statistical approaches. In: Pörtner R (ed) Animal cell biotechnology: methods and protocols. Humana, Totowa, pp 117–135CrossRefGoogle Scholar
  120. Xing Z, Kenty B, Koyrakh I, Borys M, Pan S-H, Li ZJ (2011) Optimizing amino acid composition of CHO cell culture media for a fusion protein production. Process Biochem 46(7):1423–1429. CrossRefGoogle Scholar
  121. Yang F, Long L, Sun X, Wu H, Li T, Xiang W (2014) Optimization of medium using response surface methodology for lipid production by Scenedesmus sp. Mar Drugs 12(3):1245–1257. CrossRefPubMedPubMedCentralGoogle Scholar
  122. Yee L, Blanch HW (1992) Recombinant protein expression in high cell density fed-batch cultures of Escherichia coli. Bio/Technology 10(12):1550–1556. CrossRefPubMedGoogle Scholar
  123. Yegane-Sarkandy S, Farnoud AM, Shojaosadati SA, Khalilzadeh R, Sadeghyzadeh M, Ranjbar B, Babaeipour V (2009) Overproduction of human interleukin-2 in recombinant Escherichia coli BL21 high-cell-density culture by the determination and optimization of essential amino acids using a simple stoichiometric model. Biotechnol Appl Biochem 54(1):31–39. CrossRefPubMedGoogle Scholar
  124. Yegane Sarkandy S, Shojaosadati SA, Khalilzadeh R, Sadeghizadeh M (2013) The effect of Mg2+ and Mn2+ on over-production of interleukin-2 in recombinant E. coli. Iran J Chem Chem Eng 32(1):127–131Google Scholar
  125. Yoon SK, Kim SH, Lee GM (2003) Effect of low culture temperature on specific productivity and transcription level of anti-4-1BB antibody in recombinant Chinese hamster ovary cells. Biotechnol Prog 19(4):1383–1386. CrossRefPubMedGoogle Scholar
  126. Young JD (2013) Metabolic flux rewiring in mammalian cell cultures. Curr Opin Biotechnol 24(6):1108–1115. CrossRefPubMedGoogle Scholar
  127. Yuk IH, Zhang JD, Ebeling M, Berrera M, Gomez N, Werz S, Meiringer C, Shao Z, Swanberg JC, Lee KH, Luo J, Szperalski B (2014) Effects of copper on CHO cells: Insights from gene expression analyses. Biotechnol Prog 30(2):429–442. CrossRefPubMedGoogle Scholar
  128. Zagari F, Jordan M, Stettler M, Broly H, Wurm FM (2013) Lactate metabolism shift in CHO cell culture: the role of mitochondrial oxidative activity. New Biotechnol 30(2):238–245. CrossRefGoogle Scholar
  129. Zamboni N, Saghatelian A, Patti GJ (2015) Defining the metabolome: size, flux, and regulation. Mol Cell 58(4):699–706. CrossRefPubMedPubMedCentralGoogle Scholar
  130. Zhang H, Wang H, Liu M, Zhang T, Zhang J, Wang X, Xiang W (2013) Rational development of a serum-free medium and fed-batch process for a GS-CHO cell line expressing recombinant antibody. Cytotechnology 65(3):363–378. CrossRefPubMedGoogle Scholar
  131. Zhang L, Castan A, Stevenson J, Chatzissavidou N, Vilaplana F, Chotteau V (2019) Combined effects of glycosylation precursors and lactate on the glycoprofile of IgG produced by CHO cells. J Biotechnol 289:71–79. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Iman Shahidi Pour Savizi
    • 1
  • Tooba Soudi
    • 1
  • Seyed Abbas Shojaosadati
    • 1
    Email author
  1. 1.Department of Biotechnology, Faculty of Chemical EngineeringTarbiat Modares UniversityTehranIran

Personalised recommendations