An overview of levan-degrading enzyme from microbes

  • Wenli Zhang
  • Wei Xu
  • Dawei Ni
  • Quanyu Dai
  • Cuie Guang
  • Tao Zhang
  • Wanmeng MuEmail author


Functional carbohydrates are ideal substitutes for table sugar and make up a large share of the worldwide functional food market because of their numerous physiological benefits. Growing attention has been focused on levan, a β-(2,6) fructan that possesses more favorable physicochemical properties, such as lower intrinsic viscosity and greater colloidal stability, than β-(2,1) inulin. Levan can be used not only as a functional carbohydrate but also as feedstock for the production of levan-type fructooligosaccharides (L-FOSs). Three types of levan-degrading enzymes (LDEs), including levanase (EC, β-(2,6)-fructan 6-levanbiohydrolase (LF2ase, EC, and levan fructotransferase (LFTase, EC, play significant roles in the biological production of L-FOSs. These three enzymes convert levan into different L-FOSs, levanbiose, and difructose anhydride IV (DFA IV), respectively. The prebiotic properties of both L-FOSs and DFA IV have been confirmed in recent years. Although levanase, LF2ase, and LFTase belong to the same O-glycoside hydrolase 32 family (GH32), their catalytic properties and product spectra differ significantly. In this paper, recent studies on these LDEs are reviewed, including those investigating microbial source and catalytic properties. Additionally, comparisons of LDEs, including those of their differing cleavage behavior and applications for different L-FOSs, are presented in detail.


Functional carbohydrate Levan-degrading enzyme L-FOSs Production Application 



This work was supported by the National Natural Science Foundation of China (No. 31801583), the Natural Science Foundation of Jiangsu Province (No. BK20180607), and the Fundamental Research Funds for the Central Universities (JUSRP11966) and the National First-Class Discipline Program of Food Science and Technology (No. JUFSTR20180203).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Andersen B (1967) The transferring activity of a β-fructofuranosidase: formation of two disaccharides from fructose. Acta Chem Scand 21:828–829CrossRefGoogle Scholar
  2. Calub TM, Waterhouse AL (1990) Conformational analysis of inulobiose by molecular mechanics. Carbohydr Res 207:221–235CrossRefGoogle Scholar
  3. Cha J, Park NH, Yang SJ, Lee TH (2001) Molecular and enzymatic characterization of a levan fructotransferase from Microbacterium sp. AL-210. J Biotechnol 91:49–61CrossRefGoogle Scholar
  4. Chaudhary A, Gupta LK, Gupta JK, Banerjee UC (1996) Purification and properties of levanase from Rhodotorula sp. J Biotechnol 46:55–61CrossRefGoogle Scholar
  5. Chen L, Karboune S (2019) Prebiotics in food and health: properties, functionalities, production, and overcoming limitations with second-generation levan-type fructooligosaccharides. Encyclopedia of Food Chemistry. 271–279Google Scholar
  6. Cordeiro de Paula V, Pinheiro IO, Lopes CE, Calazans G (2008) Microwave-assisted hydrolysis of Zymomonas mobilis levan envisaging oligofructan production. Bioresour Technol 99:2466–2470CrossRefGoogle Scholar
  7. Cuskin F, Flint J, Gloster T, Morland C, Baslé A, Henrissat B, Coutinho P, Strazzulli A, Solovyova A, Davies G, Gilbert H (2012) How nature can exploit nonspecific catalytic and carbohydrate binding modules to create enzymatic specificity. Proc Natl Acad Sci U S A 109:20889–20894CrossRefGoogle Scholar
  8. Dahech I, Ayed HB, Belghith KS, Belghith H, Mejdoub (2013) Microbial production of levanase for specific hydrolysis of levan. Int J Biol Macromol 60:128–133CrossRefGoogle Scholar
  9. Ernits K, Eek P, Lukk T, Visnapuu T, Alarnae T (2019) First crystal structure of an endo-levanase - the BT1760 from a human gut commensal Bacteroides thetaiotaomicron. Sci Rer-UK 9:8443. Google Scholar
  10. Gouet P, Courcelle E, Stuart DI, Metoz F (1999) ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15:305–308CrossRefGoogle Scholar
  11. Hang H (2017) Recent advances on the difructose anhydride IV preparation from levan conversion. Appl Microbiol Biotechnol 101:7477–7486CrossRefGoogle Scholar
  12. Igarashi T, Takahashi M, Yamamoto A, Etoh Y, Takamori K (1987) Purification and characterization of levanase from Actinomyces viscosus ATCC 19246. Infect Immun 55:3001–3005Google Scholar
  13. Jang KH, Ryu EJ, Park BS, Song KB, Kang SA, Kim CH, Uhm TB, Park YI, Rhee SK (2003) Levan fructotransferase from Arthrobacter oxydans J17-21 catalyzes the formation of the di-D-fructose dianhydride IV from levan. J Agric Food Chem 51:2632–2636CrossRefGoogle Scholar
  14. Jensen SL, Diemer MB, Lundmark M, Larsen FH, Blennow A, Mogensen HK, Nielsen TH (2016) Levanase from Bacillus subtilis hydrolyses β-2,6 fructosyl bonds in bacterial levans and in grass fructans. Int J Biol Macromol 85:514–521CrossRefGoogle Scholar
  15. Kang SK, Lee SO, Lim YS, Jang K, Lee TH (1998) Purification and characterization of a novel levanoctaose-producing levanase from Pseudomonas strain K-52. Biotechnol Appl Biochem 27:159–166Google Scholar
  16. Kang EJ, Lee SO, Lee JD, Lee TH (1999) Purification and characterization of a levanbiose-producing levanase from Pseudomonas sp. No. 43. Biotechnol Appl Biochem 29:263–268Google Scholar
  17. Kasperowicz A, Pristas P, Piknova M, Javorsky P, Guczynska W, Michalovski T, Kwiatkowska E (2010) Fructanolytic and saccharolytic enzymes of Treponema zioleckii strain kT. Anaerobe 16:387–392CrossRefGoogle Scholar
  18. Kilian S, Kritzinger S, Rycroft C, Gibson G, Preez JD (2002) The effects of the novel bifidogenic trisaccharide, neokestose, on the human colonic microbiota. World J Microbiol Biotechnol 18:637–644CrossRefGoogle Scholar
  19. Kuramoto T, Tamura K, Kitahata S, Izuka M, Minamiura N (1988) Abstracts of papers. Ann Meet Agric Chem Soc Jpan 62:348Google Scholar
  20. Laloux O, Cassart JP, Delcour J, Van Beeumen J, Vandenhaute J (1991) Cloning and sequencing of the inulinase gene of Kluyveromyces marxianus var. marxianus ATCC 12424. FEBS Lett 289:64–68CrossRefGoogle Scholar
  21. Li WJ, Yu SH, Zhang T, Jiang B, Mu WM (2015) Recent novel applications of levansucrases. Appl Microbiol Biotechnol 99:6959–6969CrossRefGoogle Scholar
  22. Lim YS, Kang SK, Sang OL, Lee JD, Lee TH (1998) Purification and characterization of a levanase from Streptomyces sp. 366L. J Biotechnol 61:33–41CrossRefGoogle Scholar
  23. Liu JH, Waterhouse AL (1992) Conformational analysis of levanbiose by molecular mechanics. Carbohydr Res 232:1–15CrossRefGoogle Scholar
  24. Marx SP, Winkler S, Hartmeier W (2000) Metabolization of β-(2,6)-linked fructose-oligosaccharides by different bifidobacteria. FEMS Microbiol Lett 182:163–169Google Scholar
  25. Mellet CO, Garcia Fernandez JM (2010) Difructose dianhydrides (DFAs) and DFA-enriched products as functional foods. Top Curr Chem 294:49–77CrossRefGoogle Scholar
  26. Menéndez C, Hernández L, Banguela A, Paìs J (2004) Functional production and secretion of the Gluconacetobacter diazotrophicus fructose-releasing exo-levanase (LsdB) in Pichia pastoris. Enzym Microb Technol 34:446–452CrossRefGoogle Scholar
  27. Menéndez C, Hernández L, Selman G, Mendoza MF, Hevia P, Sotolongo M, Arrieta JG (2005) Molecular cloning and expression in Escherichia coli of an exo-levanase gene from the endophytic bacterium Gluconacetobacter diazotrophicus srt4. Curr Microbiol 45:5–12Google Scholar
  28. Meng Q, Zhang T, Jiang B, Mu W, Miao M (2016) Advances in applications, metabolism, and biotechnological production of L-xylulose. Appl Microbiol Biotechnol 100:535–540CrossRefGoogle Scholar
  29. Miasnikov AN (1997) Characterization of a novel endo-levanase and its gene from Bacillus sp. L7. FEMS Microbiol Lett 154:23–28CrossRefGoogle Scholar
  30. Moreno F, Corzo N, Montilla A, Villamiel M, Olano A (2017) Current state and latest advances in the concept, production and functionality of prebiotic oligosaccharides. Curr Opin Food Sci 13:50–55CrossRefGoogle Scholar
  31. Murakami H, Muroi H, Kuramoto T, Tamura Y, Mizutani K, Nakano H, Kitahata S (1990) Purification and some properties of a levanase from Streptomyces sp. no. 7-3. Agric Biol Chem 54:2247–2255Google Scholar
  32. Murakami H, Kuramoto T, Mizutani K, Nakano H, Kitahata S (1992) Purification and some properties of a new levanase from Bacillus sp. no. 71. Biosci Biotechnol Biochem 56:608–613CrossRefGoogle Scholar
  33. Murakami H, Muroi H, Nakano H, Kitahata S (1993) Purification and some properties of a DFA IV (Di-D-fructose anhydride IV) producing levanase from Arthrobacter sp. No.11-E. Kagaku to Kogyo (in Japanese) 67:365–370Google Scholar
  34. Nolling J, Breton G, Omel Chenko M, Makarova K, Zeng Q, Gibson R, Lee M, Dubois J, Qiu D, Hitti J (2001) Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 183:4823–4838CrossRefGoogle Scholar
  35. Öner ET, Hernández L, Combie J (2016) Review of Levan polysaccharide: From a century of past experiences to future prospects. Biotechnol Adv 34:827–844CrossRefGoogle Scholar
  36. Oscarson S, Sehgelmeble FW (2002) Chemical syntheses of inulin and levan structures. J Organomet Chem 67:8457–8462CrossRefGoogle Scholar
  37. Park J, Kim M, Park Y, Shin I, Cha J, Kim CH, Rhee S (2012) Structural and functional basis for substrate specificity and catalysis of levan fructotransferase. J Biol Chem 287:31233–31241CrossRefGoogle Scholar
  38. Porras-Domínguez JR, Ávila-Fernández Á, Rodríguez-Alegría ME, Miranda-Molina A, Escalante A, González-Cervantes R, Olvera C, López Munguía A (2014) Levan-type FOS production using a Bacillus licheniformis endolevanase. Process Biochem 49:783–790CrossRefGoogle Scholar
  39. Saito K, Tomita F (2000) Difructose anhydrides: their mass-production and physiological functions. Biosci Biotechnol Biochem 64:1321–1327CrossRefGoogle Scholar
  40. Saito K, Goto H, Yokota A, Tomita F (1997) Purification of levan fructotransferase from Arthrobacter nicotinovorans GS-9 and production of DFA IV from levan by the enzyme. Biosci Biotechnol Biochem 61:1705–1709CrossRefGoogle Scholar
  41. Saito K, Kondo K, Kojima I, Yokota A, Tomita F (2000) Purification and characterization of 2,6-beta-D-fructan 6-levanbiohydrolase from Streptomyces exfoliatus F3-2. Appl Environ Microbiol 66(1):252–256CrossRefGoogle Scholar
  42. Singh RS, Singh RP, Kennedy JF (2016) Recent insights in enzymatic synthesis of fructooligosaccharides from inulin. Int J Biol Macromol 85:565–572CrossRefGoogle Scholar
  43. Singh RS, Chauhan K, Kennedy JF (2017a) A panorama of bacterial inulinases: production, purification, characterization and industrial applications. Int J Biol Macromol 96:312–322CrossRefGoogle Scholar
  44. Singh SP, Jadaun JS, Narnoliya LK, Pandey A (2017b) Prebiotic oligosaccharides: special focus on fructooligosaccharides, its biosynthesis and bioactivity. Appl Biochem Biotechnol 183:613–635CrossRefGoogle Scholar
  45. Singh R, Chauhan K, Pandey A, Larrochec C (2018) Biocatalytic strategies for the production of high fructose syrup from inulin. Bioresource Tech 260:394–403CrossRefGoogle Scholar
  46. Song KB, Bae KS, Lee YB, Lee KY, Rhee SK (2000) Characteristics of levan fructotransferase from Arthrobacter ureafaciens K2032 and difructose anhydride IV formation from levan. Enzym Microb Technol 27:212–218CrossRefGoogle Scholar
  47. Song EK, Kim H, Sung HK, Cha J (2002) Cloning and characterization of a levanbiohydrolase from Microbacterium laevaniformans ATCC 15953. Gene 29:45–55CrossRefGoogle Scholar
  48. Sridevi V, Sumathi V, Guru Prasad M, Satish KM (2014) Fructooligosaccharides - type prebiotic: A Review. J Pharm Res 8:321Google Scholar
  49. Takesue N, Sone T, Tanaka M, Tomita F, Asano K (2009) Effect of an additionally introduced degQ gene on di-D-fructofuranosyl 2,6′: 2′,6 anhydride (DFA IV) production by recombinant Bacillus subtilis in a single culture production system. J Biosci Bioeng 107:623–632CrossRefGoogle Scholar
  50. Tanaka K, Kawguchi H, Ohno K, Shohji K (1981) Enzymic formation of difructose anhydride IV from bacterial levan. J Biochem 90:1545–1548CrossRefGoogle Scholar
  51. Tanaka K, Karigane T, Yamaguchi F, Nishikawa S, Yoshida N (1983) Action of levan fructotransferase of Arthrobacter ureafaciens on levanoligosaccharides. J Biochem 94:1569–1578Google Scholar
  52. Tian F, Karboune S, Hill A (2014) Synthesis of fructooligosaccharides and oligolevans by the combined use of levansucrase and endo-inulinase in one-step bi-enzymatic system. Innov Food Sci Emerg 22:230–238CrossRefGoogle Scholar
  53. Van den Ende W, Michiels A, De RJ, Van LA (2014) Fructan biosynthetic and breakdown enzymes in dicots evolved from different invertases. Expression of fructan genes throughout chicory development. The Scientific World J 2:1281–1295CrossRefGoogle Scholar
  54. Vicentini A, Liberatore L, Mastrocola D (2016) Functional foods: trends and development of the global market. Ital J Food Sci 28:338–351Google Scholar
  55. Vijn I, van Dijken A, Lüscher M, Weisbeek P, Smeekens S (2010) Molecular analysis of plant fructan accumulation. Dev Plant Genet Breed 5:199–205Google Scholar
  56. Wang X, Yu S, Zhang T, Jiang B, Mu W (2015) From fructans to difructose dianhydrides. Appl Microbiol Biotechnol 99:175–188CrossRefGoogle Scholar
  57. Xu W, Ni D, Zhang W, Guang C, Zhang T, Mu W (2019) Recent advances in levansucrase and inulosucrase: evolution, characteristics, and application. Crit Rev Food Sci Nutr.
  58. Yamamoto Y, Takahashi Y, Kawano M, Iizuka M, Matsumoto T, Saeki S, Yamaguchi H (1999) In vitro digestibility and fermentability of levan and its hypocholesterolemic effects in rats. J Nutr Biochem 10:13–18CrossRefGoogle Scholar
  59. Yokota A, Kondo K, Nakagawa M, Kojima I, Tomita F (1993) Production of levanbiose by a levan-degrading enzyme from Streptomyces exfoliatus F3-2. Biosci Biotechnol Biochem 57:745–749CrossRefGoogle Scholar
  60. Yoo SH, Yoon EJ, Cha J, Lee HG (2004) Antitumor activity of levan polysaccharides from selected microorganisms. Int J Biol Macromol 34(1):37–41CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Wenli Zhang
    • 1
    • 2
  • Wei Xu
    • 1
    • 2
  • Dawei Ni
    • 1
    • 2
  • Quanyu Dai
    • 3
  • Cuie Guang
    • 1
    • 2
  • Tao Zhang
    • 1
    • 2
  • Wanmeng Mu
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiPeople’s Republic of China
  2. 2.International Joint Laboratory on Food SafetyJiangnan UniversityWuxiChina
  3. 3.China Rural Technology Development CenterBeijingPeople’s Republic of China

Personalised recommendations