Advertisement

Importance and role of lipids in wine yeast fermentation

  • Catherine TesnièreEmail author
Mini-Review
  • 61 Downloads

Abstract

This review summarizes the current knowledge on the importance and role of lipids in wine yeast fermentation. Lipids play an important role in membrane structure, adaptation to stress, or as signaling molecules. They are also essential nutrients whose availability can vary depending on winemaking technology, with major effects on yeast alcoholic fermentation. Moreover, lipid supplementation can greatly stimulate the formation of yeast volatile metabolites.

Keywords

Enological fermentation Lipids Saccharomyces cerevisiae Stress Volatile compounds 

Notes

Acknowledgments

We thank Philippe Chatelet and Frederic Bigey for their re-reading of the manuscript.

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The author declares no conflict of interest.

References

  1. Aguilera F, Peinado RA, Millán C, Ortega JM, Mauricio JC (2006) Relationship between ethanol tolerance, H+-ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains. Int J Food Microbiol 110:34–42CrossRefGoogle Scholar
  2. Alexandre H, Nguyen Van Long T, Feuillat M, Charpentier C (1994) Contribution à l’étude des bourbes : influence sur la fermentescibilité des moûts. Rev Fr OEnol 146:11–20Google Scholar
  3. Alimardani P, Régnacq M, Moreau-Vauzelle C, Ferreira T, Rossignol T, Blondin B, Bergès T (2004) SUT1-promoted sterol uptake involves the ABC transporter Aus1 and the mannoprotein Dan1 whose synergistic action is sufficient for this process. Biochem J 381:195–202CrossRefGoogle Scholar
  4. Bardi L, Crivelli C, Marzona M (1998) Esterase activity and release of ethyl esters of medium-chain fatty acids by Saccharomyces cerevisiae during anaerobic growth. Can J Microbiol 44:1171–1176CrossRefGoogle Scholar
  5. Bauer EF, Pretorius LS (2000) Yeast stress response and fermentation efficiency: how to survive the making of wine - a review. S Afr J Enol Vitic 21:27–51Google Scholar
  6. Beltran G, Novo M, Guillamón JM, Mas A, Rozès N (2008) Effect of fermentation temperature and culture media on the yeast lipid composition and wine volatile compounds. Int J Food Microbiol 121:169–177CrossRefGoogle Scholar
  7. Belviso S, Bardi L, Biondi Bartolini A, Marzona M (2004) Lipid nutrition of Saccharomyces cerevisiae in winemaking. Rev Can Microbiol 50:669–674CrossRefGoogle Scholar
  8. Bely M, Sablayrolles JM, Barre P (1990) Automatic detection of assimilable nitrogen deficiencies during alcoholic fermentation in oenological conditions. J Ferment Bioeng 70:246–252CrossRefGoogle Scholar
  9. Bozaquel-Morais BL, Madeira JB, Maya-Monteiro CM, Masuda CA, Montero-Lomeli M (2010) A new fluorescence-based method identifies protein phosphatases regulating lipid droplet metabolism. PLoS One 5:e13692CrossRefGoogle Scholar
  10. Casalta E, Vernhet A, Sablayrolles JM, Tesnière C, Salmon JM (2016) Review: characterization and role of grape solids during alcoholic fermentation under enological conditions. Am J Enol Vitic 67:133–138CrossRefGoogle Scholar
  11. Casalta E, Salmon JM, Picou C, Sablayrolles JM (2018) Grape solids: lipid composition and role during alcoholic fermentation under oenological conditions. Am J Enol Vitic 70.  https://doi.org/10.5344/ajev.2018.18049
  12. Delfini C, Pessione E, Moruno EG, Giunta C (1992) Localization of volatile acidity reducing factors in grape. J Ind Microbiol 11:19–22CrossRefGoogle Scholar
  13. Deroite A, Legras JL, Rigou P, Ortiz-Julien A, Dequin S (2018) Lipids modulate acetic acid and thiol final concentrations in wine during fermentation by Saccharomyces cerevisiae x Saccharomyces kudriavzerii hybrids. AMB Express 8:130CrossRefGoogle Scholar
  14. Deytieux C, Mussard L, Biron MJ, Salmon JM (2005) Fine measurement of ergosterol requirements for growth of Saccharomyces cerevisiae during enological fermentations. Appl Microbiol Biotechnol 68:268–271CrossRefGoogle Scholar
  15. Díaz-Hellín P, Gómez-Alonso S, Borrull A, Rozès N, Cordero-Otero R, Úbeda J (2014) Membrane lipid variability in Saccharomyces cerevisiae wine strains rehydrated in the presence of metabolic activators. J Agric Food Chem 62:8679–8685CrossRefGoogle Scholar
  16. Duc C, Pradal M, Sanchez I, Noble J, Tesnière C, Blondin B (2017) A set of nutrient limitations triggers yeast cell death in a nitrogen-dependent manner during wine alcoholic fermentation. PLoS One 12:e0184838CrossRefGoogle Scholar
  17. Duc C, Noble J, Tesnière C, Blondin B (2019) Occurrence of yeast cell death associated to micronutrient starvation during wine fermentation varies with nitrogen sources. Oeno One 3: 445–456Google Scholar
  18. Dufourc EJ (2008) Sterols and membrane dynamics. J Chem Biol 1:63–77CrossRefGoogle Scholar
  19. Ejsing CS, Sampaio JL, Surendranath V, Duchoslav E, Ekroos K, Klemm RW, Simons K, Shevchenko A (2009) Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc Natl Acad Sci U S A 106:2136–2141CrossRefGoogle Scholar
  20. Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH Jr, Murphy RC, Raetz CRH, Russell DW, Seyama Y, Shaw W, Shimizu T, Spener F, van Meer G, VanNieuwenhze MS, White SH, Witztum JL, Dennis EA (2005) A comprehensive classification system for lipids. J Lipid Res 46:839–862CrossRefGoogle Scholar
  21. Fei W, Wang H, Fu X, Bielby C, Yang H (2009) Conditions of endoplasmic reticulum stress stimulate lipid droplet formation in Saccharomyces cerevisiae. Biochem J 424:61–67CrossRefGoogle Scholar
  22. Fujii T, Kobayashi O, Yoshimoto H, Furukawa S, Tamai Y (1997) Effect of aeration and unsaturated fatty acids on expression of the Saccharomyces cerevisiae alcohol acetyltransferase gene. Appl Environ Microbiol 63:910–915Google Scholar
  23. Fujiwara D, Kobayashi O, Yoshimoto H, Harashima S, Tamai Y (1999) Molecular mechanism of the multiple regulation of the Saccharomyces cerevisiae ATF1 gene encoding alcohol acetyltransferase. Yeast 15:1183–1197CrossRefGoogle Scholar
  24. Goldberg AA, Bourque SD, Kyryakov P, Boukh-Viner T, Gregg C, Beach A, Burstein MT, Machkalyan G, Richard V, Rampersad S, Titorenko VI (2009) A novel function of lipid droplets in regulating longevity. Biochem Soc Trans 37:1050–1055CrossRefGoogle Scholar
  25. Grillitsch K, Connerth M, Kofeler H, Arrey TN, Rietschel B, Wagner B, Karas M, Daum G (2011) Lipid particles/droplets of the yeast Saccharomyces cerevisiae revisited: lipidome meets proteome. Biochim Biophys Acta 1811:1165–1176CrossRefGoogle Scholar
  26. Guilloux-Benatier M, Le Fur Y, Feuillat M (1998) Influence of fatty acids on the growth of wine microorganisms Saccharomyces cerevisiae and Oenococcus oeni. J Ind Microbiol Biotechnol 20:144–149CrossRefGoogle Scholar
  27. Henderson CM, Block DE (2014) Examining the role of membrane lipid composition in determining the ethanol tolerance of Saccharomyces cerevisiae. Appl Environ Microbiol 80:2966–2972CrossRefGoogle Scholar
  28. Henderson CM, Zeno WF, Lerno LA, Longo ML, Block DE (2013a) Fermentation temperature modulates phosphatidylethanolamine and phosphatidylinositol levels in the cell membrane of Saccharomyces cerevisiae. Appl Environ Microbiol 79:5345–5356CrossRefGoogle Scholar
  29. Henderson CM, Lozada-Contreras M, Jiranek V, Longo ML, Block DE (2013b) Ethanol production and maximum cell growth are highly correlated with membrane lipid composition during fermentation as determined by lipidomic analysis of 22 Saccharomyces cerevisiae strains. Appl Environ Microbiol 79:91–104CrossRefGoogle Scholar
  30. Henry SA (1982) Membrane lipids of yeast: biochemical and genetic study. In: Strathern JN, Jones EW, Broach JR (eds) Molecular biology of the yeast Saccharomyces cerevisiae: metabolism and gene expression. Cold Spring Harbr Laboratory, New York, pp 101–158Google Scholar
  31. Jacquier N, Schneiter R (2010) Ypk1, the yeast orthologue of the human serum- and glucocorticoid-induced kinase, is required for efficient uptake of fatty acids. J Cell Sci 123:2218–2227CrossRefGoogle Scholar
  32. Klug L, Daum G (2014) Yeast lipid metabolism at a glance. FEMS Yeast Res 14:369–388CrossRefGoogle Scholar
  33. Koch B, Schmidt C, Daum G (2014) Storage lipids of yeasts: a survey of nonpolar lipid metabolism in Saccharomyces cerevisiae, Pichia pastoris, and Yarrowia lipolytica. FEMS Microbiol Rev 38:892–915CrossRefGoogle Scholar
  34. Lee AG (2004) How lipids affect the activities of integral membrane proteins. Biochim Biophys Acta 1666:62–87CrossRefGoogle Scholar
  35. López-Malo M, García-Ríos E, Chiva R, Guillamόn JM (2014) Functional analysis of lipid metabolism genes in wine yeasts during alcoholic fermentation at low temperature. Microb Cell 1:365–375CrossRefGoogle Scholar
  36. Luparia V, Soubeyrand V, Berges T, Julien A, Salmon JM (2004) Assimilation of grape phytosterols by Saccharomyces cerevisiae and their impact on enological fermentations. Appl Microbiol Biotechnol 65:25–32CrossRefGoogle Scholar
  37. Malcorps P, Cheval JM, Jamil S, Dufour JP (1991) A new model for the regulation of ester synthesis by alcohol acetyl transferase in Saccharomyces cerevisiae during fermentation. J Am Soc Brew Chem 49:47–53Google Scholar
  38. Mannazzu I, Angelozzi D, Belviso S, Budroni M, Farris GA, Goffrini P, Lodi T, Marzona M, Bardi L (2008) Behaviour of Saccharomyces cerevisiae wine strains during adaptation to unfavourable conditions of fermentation on synthetic medium: cell lipid composition, membrane integrity, viability and fermentative activity. Int J Food Microbiol 121:84–91CrossRefGoogle Scholar
  39. Mitchell DC, Lawrence JTR, Litman BJ (1996) Primary alcohols modulate the activation of the G protein-coupled receptor rhodopsin by a lipid-mediated mechanism. J Biol Chem 271:19033–19036CrossRefGoogle Scholar
  40. Murphy DJ, Vance J (1999) Mechanisms of lipid-body formation. Trends Biochem Sci 24:109–115CrossRefGoogle Scholar
  41. Ness F, Achstetter T, Duport C, Karst F, Spagnoli R, Degryse E (1998) Sterol uptake in Saccharomyces cerevisiae heme auxotrophic mutants is affected by ergosterol and oleate but not by palmitoleate or by sterol esterification. J Bacteriol 180:1913–1919Google Scholar
  42. Nurminen T, Konttinen K, Suomalainen H (1975) Neutral lipids in the cells and cell envelope fractions of aerobic baker’s yeast and anaerobic brewer’s yeast. Chem Phys Lipids 14:15–32CrossRefGoogle Scholar
  43. Ochando T, Mouret JR, Humbert-Goffard A, Sablayrolles JM, Farines V (2017) Impact of initial lipid content and oxygen supply on alcoholic fermentation in champagne-like musts. Food Res Int 98:87–94CrossRefGoogle Scholar
  44. Pinu FR, Edwards PJB, Jouanneau S, Killmartin PA, Gardner RC, Villas-Bôas SG (2014) Sauvignon blanc metabolomics: grape juice metabolites affecting the development of varietal thiols and other aroma compounds in wines. Metabolomics 10:556–573CrossRefGoogle Scholar
  45. Ravaglia S, Delfini C (1993) Production of medium chain fatty acids and their ethyl esters by yeast strains isolated from musts and wines. It J Food Sci 5:21–36Google Scholar
  46. Redόn M, Guillamόn JM, Mas A, Rozès N (2011) Effect of gowth temperature on yeast lipid composition and alcoholic fermentation at low temperature. Eur Food Res Technol 232:517–527CrossRefGoogle Scholar
  47. Rollero S, Bloem A, Camarasa C, Sanchez I, Ortiz-Julien A, Sablayrolles JM, Dequin S, Mouret JR (2015) Combined effects of nutrients and temperature on the production of fermentative aromas by Saccharomyces cerevisiae during wine fermentation. Appl Microbiol Biotechnol 99:2291–2304CrossRefGoogle Scholar
  48. Rozès N, Larue F, Ribéreau-Gayon P (1988) Effect of a variation of grape must temperature on the fermentation ability and the neutral lipid content of Saccharomyces cerevisiae. Biotechnol Lett 10:821–824CrossRefGoogle Scholar
  49. Ruggiero A, Vitalini N, Bernasconi S, Iriti M (2013) Phytosterols in grape and wine and effects of agrochemicals on their levels. Food Chem 14:3473–3479CrossRefGoogle Scholar
  50. Saerens SM, Delvaux F, Verstrepen KJ, Van Dijck P, Thevelein JM, Delvaux FR (2008) Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation. Appl Environ Microbiol 74:454–461Google Scholar
  51. Schaffer JE (2002) Fatty acid transport: the roads taken. Am J Phys 282:E239–E246Google Scholar
  52. Shpilka T, Welter E, Borovsky N, Amar N, Mari M, Reggiori F, Elazar Z (2015) Lipid droplets and their component triglycerides and steryl esters regulate autophagosome biogenesis. EMBO J 34:2117–2131CrossRefGoogle Scholar
  53. Swiegers JH, Bartowsky EJ, Henschke PA, Pretorius IS (2005) Yeast and bacterial modulation of wine aroma and flavour. Aust J Grape Wine Res 11:139–173CrossRefGoogle Scholar
  54. Tesnière C, Delobel P, Pradal M, Blondin B (2013) Impact of nutrient imbalance on wine alcoholic fermentations: nitrogen excess enhances yeast cell death in lipid-limited must. PLoS One 8:e61645CrossRefGoogle Scholar
  55. Thompson IP, Bailey MJ, Elis RJ, Purdy KJ (1993) Subgrouping of bacterial populations by cellular fatty acid composition. FEMS Microbiol Ecol 102:75–84CrossRefGoogle Scholar
  56. Thurston PA, Taylor R, Ahvenainen J (1981) Effects of linoleic supplementation on the synthesis by yeast of lipids and acetate esters. J Inst Brew 87:92–95CrossRefGoogle Scholar
  57. Tierney KJ, Block DE, Longo ML (2005) Elasticity and phase behavior of DPPC membrane modulated by cholesterol, ergosterol, and ethanol. Biophys J 89:2481–2493CrossRefGoogle Scholar
  58. Torija MJ, Beltran G, Novo M, Poblet M, Guillamόn JM, Mas A, Rozès N (2003) Effects of fermentation temperature and Saccharomyces species on the cell fatty acid composition and presence of volatile compounds in wine. Int J Food Microbiol 85:127–136CrossRefGoogle Scholar
  59. Tuller G, Nemec T, Hrastnik C, Daum G (1999) Lipid composition of subcellular membranes of an FY1679-derived haploid yeast wild-type strain grown on different carbon sources. Yeast 15:1555–1564CrossRefGoogle Scholar
  60. Tumanov S, Pinu FR, Greenwood DR, Villas-Bôas SG (2018) Effect of free fatty acids and lipolysis on Sauvignon Blanc fermentation. Aust J Grape Wine Res 24:398–405CrossRefGoogle Scholar
  61. Valero E, Millan MC, Mauricio JC, Ortega JM (1998) Effect of grape skin maceration on sterol, phospholipid, and fatty acid contents in Saccharomyces cerevisiae during alcoholic fermentation. Am J Vitic 49:119–124Google Scholar
  62. Valero E, Millàn C, Ortega JM (2002) Changes in the lipid composition of Saccharomyces cerevisiae race Capensis (G-1) during alcoholic fermentation and flor film formation. Lebensm Wiss Technol 35:593–599CrossRefGoogle Scholar
  63. van der Rest ME, Kamiminga AH, Nakano A, Anraku Y, Poolman B, Konings WN (1995) The plasma membrane of Saccharomyces cerevisiae: structure, function and biogenesis. Microbiol Rew 59:304–322Google Scholar
  64. Vanegas JM, Faller R, Longo ML (2010) Influence of ethanol on lipid/sterol membranes: phase diagram construction from AFM imaging. Langmuir 26:10415–10418CrossRefGoogle Scholar
  65. Varela C, Torrea D, Schmidt SA, Ancin-Azpilicueta C, Henschke PA (2012) Effect of oxygen and lipid supplementation on the volatile composition of chemically defined medium and Chardonnay wine fermented with Saccharomyces cerevisiae. Food Chem 135:2863–2871CrossRefGoogle Scholar
  66. Venter JJ, van Vuuren HJJ, Tromp A, Randall JH (1989) Relationship between fatty acid concentrations in wine yeasts and sugar fermentation at different temperatures. S Afr J Enol Vitic 10:44–48Google Scholar
  67. Verstrepen KJ, Van Laere SD, Vanderhaegen BM, Derdelinckx G, Dufour JP, Pretorius IS, Winderickx J, Thevelein JM, Delvaux FR (2003) Expression levels of the yeast alcohol acetyltransferase genes ATF1, Lg-ATF1, and ATF2 control the formation of a broad range of volatile esters. Appl Environ Microbiol 69:5228–5237CrossRefGoogle Scholar
  68. Welte MA, Gould AP (2017) Lipid droplet functions beyond energy storage. Biochim Biophys Acta Mol Cell Biol Lipids 1862:1260–1272CrossRefGoogle Scholar
  69. You KM, Rosenfield CL, Knipple DC (2003) Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Appl Environ Microbiol 69:1499–1503CrossRefGoogle Scholar
  70. Zara G, Bardi L, Belviso S, Farris GA, Zara S, Budroni M (2008) Correlation between cell lipid content, gene expression and fermentative behaviour of two Saccharomyces cerevisiae wine strains. J Appl Microbiol 104:906–914CrossRefGoogle Scholar
  71. Zinser E, Paltauf F, Daum G (1993) Sterol composition of yeast organelle membranes and subcellular distribution of enzymes involved in sterol metabolism. J Bacteriol 175:2853–2858CrossRefGoogle Scholar
  72. Zou Z, Dirusso CC, Ctrnacta V, Black PN (2002) Fatty acid transport in Saccharomyces cerevisiae: directed mutagenesis of FAT1 distinguishes the biochemical activities associated with Fat1p. J Biol Chem 277:31062–31071CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.UMR SPO, INRA, Montpellier SupAgro, Université de MontpellierMontpellierFrance

Personalised recommendations